<u>CHAPTER-2</u>
INVERSE TRIGONOMETRIC FUNCTION
<u>CLASS-XII</u>
01 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1	Shown below is the graph of function 'f' whose domain is R – (-1,1). Some portion of	1
	graph is hidden behind square.	
	Y 🔺	
	-5 -4 -3 -2 -1 1 2 3 4 5	
	Which of the following is $f(y)$?	
	which of the following is $f(x)$: a) $\tan^{-1} x$	
	b) $\cot^{-1}x$	
	$c) \sec^{-1}x$	
	d) $cosec^{-1}x$	
2	The domain of the function $y = \sin^{-1}(-x^2)$ is	1
-	a)[0.1]	_
	b)(0,1)	
	c)[-1,1]	
	d)(-1,1)	
3	If $x < 0$, $y < 0$ such that $xy = 1$, then $tan^{-1}x + tan^{-1}y$ equals	1
	a) $\pi/2$	
	b) $-\pi/2$	
	c) $-\pi$	
	d) None of these	
4	The positive integral solution of the equation $\tan^{-1}x + \cos^{-1}\frac{y}{\sqrt{1+y^2}} = \sin^{-1}\frac{3}{\sqrt{10}}$ is	1
	a) x =1, y =2	
	b) $x = 2, y = 1$	
	c) $x = 3, y = 2$	
	d) x = -2, y = -1	
5	If $tan^{-1} x = \pi/10$ for some $x \in R$, then the value of $cot^{-1} x$ is	1
	a) $\pi/5$	
	b) $2\pi/5$	
	c) $3\pi/5$	
	d) $4\pi/5$	
6	The greatest and least values of $(\sin^{-1} x)^2 + (\cos^{-1} x)^2$ are respectively	1
	a) $\pi^{2}/8$, $5\pi^{2}/4$	
	b) $\pi^2/4, 5\pi^2/8$	
	c) $5\pi^2/4, \pi^2/8$	
	d) 5 <i>π</i> ⁺ /8, <i>π</i> ⁺ /4	

7	The value of sin($3\pi/2$) – sin (sec ⁻¹ t + cosec ⁻¹ t), when $ t \ge 1$ is	1
	a) 0	
	b) 1	
	c) -1	
	d) -2	
8	The principal value of $\cos^{-1}(1/2) + \sin^{-1}(-1/\sqrt{2})$ is	1
	a) $\pi/12$	
	b) π	
	c) π/3	
	d) $\pi/6$	
9	$\tan^{-1}(\frac{x}{y}) - \tan^{-1}(\frac{x-y}{x+y}) =$	1
	a) $\frac{\pi}{2}$	
	$\frac{2}{\pi}$	
	3	
	c) $\frac{1}{4}$	
	d) $-3\frac{\pi}{4}$	
10	Value of $Sin(\pi/3 - sin^{-1}(-1/2))$ is	1
	a)1/2	
	b)1/3	
	c)1/4	
	d)1	
11	For the following statement answer TRUE OR FALSE as appropriate:	1
	The value of $\cos^{-1}\cos\frac{5\pi}{4}$ is $\frac{5\pi}{4}$.	
12	For the following statement answer TRUE OR FALSE as appropriate: cos ⁻¹ x is an increasing	1
	function in its domain (T/F)and is periodic in nature(T/F):	
	(a)T,T (b)T,F (c)F,T (d)F,F	
13	Fill in the blanks (3-5)	1
	If $\sin^{-1}\frac{1}{2} + \cos^{-1}x = \frac{\pi}{2}$ then the value of x is	
14	The range of tan ⁻¹ x is	1
15	The principal value branch of sec ⁻¹ x is	1
16	Multiple choice questions:	1
	Find the value of tan ⁻¹ $\sqrt{3}$ -cot ⁻¹ $\sqrt{3}$ is;	
	(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{6}$ (d) $\frac{3\pi}{2}$	
17	The value of $\cos^{-1}\cos(1540^{\circ})$ is;	1
	(a)1540 [°] (b)1490 [°] (c)100 [°] (d)none of these	
18	The domain of the function $f(x)=sin^{-1}(2x-3)$ is:	1
	(a)xe[1,2] (b)xe(1,2) (c)xe[-1,1] (d)none of these	
19	Assertion(A):All trigonometric functions have their inverses over their respective domains.	1
	Reason(R): The inverse of tan ⁻¹ x exists for some x \in R	
	(a)Both assertion and reason are correct and reason is the correct explanation of assertion.	
	(b)both assertion and reason are correct but reason is not the correct explanation of	
	assertion	
	(c)assertion is correct but reason is incorrect	
	(d)assertion is incorrect but reason is correct	
20	The graph of cot ⁻¹ x is:	1

	$\begin{array}{c} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$	
	(a) (b) (c) (d)none	
21	The domain of sin ⁻¹ (2x) is	1
	(a) [0, 1]	
	(b) [-1, 1]	
	(c) [-1/2, 1/2]	
	(d) [-2, 2]	
22	The value of the expression sin [cot ⁻¹ (cos (tan ⁻¹ 1))] is	1
	(a) 0	
	(b) 1	
	(c) 1/V3	
	(d) √(2/3)	
23	$sin[\pi/3 - sin^{-1}(-\frac{1}{2})]$ is equal to:	1
	(d) ⁷ 2	
	(b) ¹ / ₃	
	(c) -1	
	(d) 1	
24	If $\cos^{-1} x + \sin^{-1} x = \pi$, then the value of x is	1
	(a)1/√2 (b) 1/√3	
	$(c) 3/\sqrt{2}$	
	(d) 2/V3	
25	If \tan^{-1} (cot θ) = 2 θ , then θ is equal to (a) $\pi/3$	1
	(b) π/4	
	(c) π/6	
	(d) None of these	
26	$\cot(\pi/4 - 2\cot^{-1} 3) =$	1

	(a) 7	
	(b) 6	
	(c) 5 (d) Name of these	
27	(d) None of these $(1, 2, 3)$ is	1
27	The domain of $y = \cos^2 (x^2 - 4)$ is	-
	(a) [3, 5]	
	(b) [0, π]	
	$(c) [-1/5 - 1/3] \cap [-1/5 - 1/3]$	
	(d) [-√5, -√3] ∪ [√3, √5]	
28		1
		-
	tan ⁻¹ (tan 3π/5) is	
	(a) 2π/5	
	(b) -2π/5	
	(c) 3π/5	
	(d) -3π/5	
29	The domain of sin ⁻¹ (2x) is	1
	(a) [0, 1]	
	(b) [-1,1]	
	(c) [-1/2, 1/2]	
	(d) [_2_2]	
	(u) [-2, 2]	
30	$2\tan^{-1}(\cos x) = \tan^{-1}(2\csc x)$	1
	(a) 0 (b) π/3	
	(c) π/4	
	(d) π/2	
21	\mathbf{D} : $\mathbf{f} \cdot \mathbf{f} = \mathbf{f} \cdot \mathbf{f} = \mathbf{f} \cdot \mathbf{f}$	
51	Domain of the function SIN x is (A) [0 1]	
	$(B) \mathbf{R}$	1
	(C) [-1,1]	

	(D) None of these	
32	If $\sin^{-1} x + \sin^{-1}(1 - x) = 0$, then x is equal to:	
	(A)0	
	(B) 1 (C) 2	1
	(C) 2 (D) None of these	
33	If $\sin^{-1} x - \cos^{-1} x = \frac{\pi}{6}$, then $x =$	
	$(A)\frac{1}{2}$	
	$(B)\frac{\sqrt{3}}{2}$	1
	$(C) - \frac{1}{2}$	
	$(D) - \frac{\sqrt{3}}{2}$	
34	If $\theta = \sin^{-1} \{ \sin(-600^\circ) \}$ then one of the possible value of θ is :	
	$(\Delta)^{\frac{\pi}{2}}$	
	$\frac{\pi}{3}$	
	$(B)\frac{1}{2}$	1
	$(C)\frac{2\pi}{2}$	
	3 -2π	
	$(D)\frac{1}{3}$	
35	$\sin^{-1}(\cos y) = \frac{\pi}{2} - y$ is valid for	
	$(A) - \pi \le y \le 0$	
	(B) $0 \le y \le \pi$	1
	$(C) - \frac{n}{2} \le y \le \frac{n}{2}$	
26	(D) None of these	
36	The domain of $\sin^{-1} \left[\frac{2x}{1+x^2} \right] =$	
	(A)(-2,1)	1
	(B) [-2,1]	-
	$(D) \begin{bmatrix} -1 & 1 \end{bmatrix}$	
37	$\sin^{-1}\left(\frac{4}{2}\right) + \sin^{-1}\left(\frac{5}{2}\right)$ is equal to	
	(A) $\sin^{-1}\left(\frac{16}{4}\right)$ (13)	
	(B) $\cos^{-1}\left(\frac{16}{16}\right)$	1
	(C) $-\sin^{-1}\left(\frac{16}{27}\right)$	
	(D) None of these	
38	The value $\sin^{-1}\left(\cos\left(\left(\frac{43\pi}{5}\right)\right)\right)$ is	
	$\left(\left(\left$	
	(A) ${5}$	1
	(B) $\frac{-7\pi}{}$	
	$\int_{1}^{1} \frac{5}{\pi}$	
	$(C)\frac{1}{10}$	

	(D) $\frac{-\pi}{10}$	
39	The principal value of $\cos^{-1}\left(\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ is,	
	(a) $\frac{\pi}{12}$ (b) $\frac{\pi}{6}$ (c) π (d) $\frac{\pi}{2}$	1
40	What is the domain of the function $\cos^{-1}(2x - 3)$,	
	(a) $[-1,1]$ (b) $(1,2)$ (c) $(-1,1)$ (d) $[1,2]$	1
41	Simplest form of $\tan \left[\sqrt{1+x} - \sqrt{1-x}\right]$ is	
	Simplest form of tail $\left[\frac{1}{\sqrt{1+x}+\sqrt{1-x}}\right]$ is,	
	$(a)^{\frac{\pi}{2}} - \frac{\pi}{2}$ (b) $\frac{\pi}{2} + \frac{\pi}{2}$	1
	$(c) \frac{\pi}{4} = \frac{1}{2} \cos^{-1} x$ $(d) \frac{\pi}{4} + \frac{1}{2} \cos^{-1} x$	
42	$(C)_{4}_{2} = \frac{1}{2} COS \chi + \frac{1}{2} COS \chi$	
72	The principal value of $\cos^{-1}\left(\cos\frac{\pi}{6}\right)$ is,	1
12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
45	The principal value of $\tan^2 \sqrt{3} - \cot^2(-\sqrt{3})$ is, (a) π (b) $\frac{\pi}{2}$ (c)0 (d) $2\sqrt{3}$	1
44	$\frac{(a)\pi}{(a)^2} = \frac{(a)\pi}{(a)^2} + \cos^{-1}(2x) - \frac{\pi}{a} \text{ then } x \text{ is equals to}$	
	$\begin{array}{c} 1 & \sin^2 \left(\frac{1}{2} \right)^2 + \cos^2 \left(\frac{2x}{2} \right)^2 = \frac{1}{2}, \text{ mon } x \text{ is equals to,} \\ (a)^{\frac{1}{2}} & (b)^{\frac{2}{2}} & (c)^{\frac{1}{2}} & (d)^{\frac{5}{2}} \end{array}$	1
45	$(a)_{5}^{\pi}$ $(b)_{5}^{\pi}$ $(c)_{10}^{\pi}$ $(a)_{2}^{\pi}$	
	$\sin\left[\frac{1}{3} + \sin\left(\frac{1}{2}\right)\right] \text{ is equals to,} $	1
46	$\begin{array}{c} (a)_{1} \\ (b)_{\frac{7}{2}} \\ (c)_{\frac{3}{3}} \\ (c)_{\frac{3}{3}} \\ (d)_{\frac{7}{4}} \\ (d)_{\frac{7}{4}}$	
-0	The value of sin $\left(\sec^{-1}\left(\frac{1}{15}\right)\right)$ is,	1
17	$(a)_{17} (b)_{17} (c)_{8} (d)_{15}$ Assortion (A): Maximum value of $(\cos^{-1} x)^2$ is π^2	
47	Reason (R) : Range of the principal value branch of $\cos^{-1} x$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	
	(a)Both A and R are true and R is correct explanation of A.	1
	(b)Both A and R are true but R is not correct explanation of A. (c)A is true but R is false.	
	(d)A is false but R is true.	
48	Assertion (A) : the domain of the function $\sec^{-1}(2x)$ is $(-\infty, \frac{-1}{2}] \cup [\frac{1}{2}, \infty)$	
	Reason (R) : $\sec^{-1}(-2) = -\frac{\pi}{4}$	
	(a)Both A and R are true and R is correct explanation of A.	1
	(b)Both A and R are true but R is not correct explanation of A.	
	(c)A is true but R is false. (d)A is false but R is true	
49		
	Assertion (A): $\cos^{-1} x \ge \sin^{-1} x$ for all $x \in [-1,1]$ Parson (P) : $\cos^{-1} x$ is decreasing function in $[-1,1]$	
	Keason (K) : cos x is decreasing function in [-1,1]	1
	(a)Both A and R are true and R is correct explanation of A.	1
	(c)A is true but R is false.	
	(d)A is false but R is true.	
50		1

	Assertion(A): $\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5} = \sin^{-1}\frac{77}{85}$	
	Reason (R): $\sin^{-1} x + \sin^{-1} y = \sin^{-1} \left(x \sqrt{1 - y^2 + y \sqrt{1 - x^2}} \right)$	
	For $\leq x, y \leq x^2 + y^2$	
	 (a)Both A and R are true and R is correct explanation of A. (b)Both A and R are true but R is not correct explanation of A. (c)A is true but R is false. (d)A is false but R is true. 	
51	The value of $\sin^{-1} \left(\cos \frac{\pi}{9} \right)$ is (a) $\frac{7\pi}{18}$ (b) $\frac{5\pi}{9}$ (c) $-\frac{5\pi}{9}$ (d) $\frac{\pi}{9}$	1
52	$\frac{\sin^{-1}(\sin\frac{2\pi}{3}) + \cos^{-1}(\cos\frac{2\pi}{3})}{(a)\frac{4\pi}{3}} \qquad (b) \ \frac{2\pi}{3} \qquad (c) \ \pi \qquad (d) \ \frac{\pi}{2}$	1
53	The principal value of $\tan^{-1}\sqrt{3} - \sec^{-1}(-2)$ (a) $-\frac{\pi}{3}$ (b) $\frac{2\pi}{3}$ (c) π (d) $\frac{\pi}{2}$	1
54	The value of $\tan^{-1}(\tan\frac{5\pi}{6}) + \cos^{-1}(\cos\frac{13\pi}{6})$ (a) $\frac{7\pi}{18}$ (b) $\frac{5\pi}{9}$ (c) $-\frac{5\pi}{9}$ (d) 0	1
55	The domain of the function defined by $f(x) = \sin^{-1}\sqrt{x-1}$ is (a) [1,2] (b) [-1,1] (c) [0,1] (d) none of these	1
56	The domain of the function defined by $f(x) = \cos^{-1}(2x - 1)$ is (a) [1,2](b) [-1,1] (c) [0,1] (d) none of these	1
57	The value of $\cos^{-1}(2x^2 - 1)$, $0 \le x \le 1$ is equal to (a) $2\cos^{-1} x$ (b) $2\sin^{-1} x(c)\pi - 2\cos^{-1} x$ (d) $\pi + 2\cos^{-1} x$	1
58	If $y = \cos^{-1}(\cos 10)$, then y is equal to (a)10 (b) $4\pi - 10$ (c) $2\pi + 10$ (d) $2\pi - 10$	1
59	If $\cos^{-1} x > \sin^{-1} x$, then (a) $x < 0$ (b) $-1 < x < 0$ (c) $0 \le x < \frac{1}{\sqrt{2}}$ (d) $-1 \le x < \frac{1}{\sqrt{2}}$	1
60	 In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices. (a) Both A and R are true and R is the correct explanation of A. (b) Both A and R are true but R is not the correct explanation of A. 	1

	(c) A is true but R is false.	
	(d) A is false but R is true.	
	Assertion (A): The value of sin[tan ⁻¹ ($-\sqrt{3}$) + cos ⁻¹ ($-\frac{\sqrt{3}}{2}$)] is 1	
	Reason (R): $\tan^{-1}(-x) = -\tan^{-1}x$ and $\cos^{-1}(-x) = \cos^{-1}x$.	
61	$\cos^{-1}\left(\frac{-1}{2}\right)$	
	The Principal Value of $\begin{pmatrix} 2 \\ \end{pmatrix}$ is	1
	(A) $\frac{\pi}{3}$ (B) $\frac{2\pi}{3}$ (C) $\frac{\pi}{6}$ (D) $\frac{5\pi}{6}$	
62		
62	The Principal value of tan '(-1) is $(A) \frac{\pi}{(B)} \frac{\pi}{(C)} - \frac{\pi}{(C)} = (D) \frac{-\pi}{(D)}$	1
	$(11)_{4}(12)_{3}$ (12) $(12)_{4}$	
63	If $\tan^{-1}\frac{3}{4} = x$ then Sin x is	
	(A) $\frac{1}{r}$ (B) $\frac{3}{r}$ (C) $\frac{4}{r}$ (D) $\frac{3}{r}$	1
	5 5 5 /	
64	$\sin^{-1}\frac{1}{2}$ and $\sin^{-1}\frac{1}{2}$	1
	If $\tan^{-1}x = 2$ find the value of x is $(\Lambda) \sqrt{7}$ (P) $\Lambda = (\Omega)^{-1}$ (D) m d	1
	$(A) \sqrt{3} (B) 1 (C) \sqrt{3} (D) n. u$	
65	Evaluate $\sin\left[\frac{\pi}{-}\right]$ Sin ⁻¹ $\left(\frac{-\sqrt{3}}{-}\right)$	
	(A) 1 (D) $(2^{-\sqrt{3}})^{\sqrt{3}}$	1
	(A) 1 (B) $\sqrt{2}$ (C) $-\frac{1}{2}$ (D) $\frac{1}{2}$	
66	. Evaluate $\operatorname{Cos}\left[\frac{\pi}{2} - \operatorname{Sin}^{-1}\left(\frac{1}{2}\right)\right]$	
	A) 1 (B) $\frac{\sqrt{3}}{\sqrt{3}}$ (C) $\frac{1}{\sqrt{3}}$ (D) 0	1
67	The value of $\tan^{-1}1 + \cos^{-1}(\frac{-1}{2})$	1
	(A) 11/12 (B) $\frac{\pi}{12}$ (C) $\frac{3\pi}{4}$ (D) $\frac{5\pi}{6}$	1
68	The value of $\operatorname{cosec}^{-1}(-1) + \operatorname{Cot}^{-1}(\frac{-1}{\sqrt{3}})$	1
	(A) $\frac{\pi}{6}$ (B) $\frac{\pi}{3}$ (C) $\frac{5\pi}{12}$ (D) $\frac{\pi}{12}$	
69		
05	$\tan^{-1}\sqrt{3} - \sec^{-1}(-2)$ is equal to	1
	(A) π (B) $\frac{-\pi}{3}$ (C) $\frac{\pi}{3}$ (D) $\frac{2\pi}{3}$	
70	The value of $\tan^{-1}(1) + \cos^{-1}(-1) + \sin^{-1}(-1)$	1
	The value of tall $(1) + \cos\left(\frac{1}{2}\right) + \sin\left(\frac{1}{2}\right)$	1
	(A) π (B) $\frac{-\pi}{2}$ (C) $\frac{\pi}{2}$ (D) $\frac{3\pi}{4}$	
71	3 3 4 If tan ⁻¹ x= y, then	1
	(a) $-1 < y < 1$	
	(b) $\frac{-\pi}{2} \le y \le \frac{\pi}{2}$	
	$2^{-j} - 2^{-j} - 2$	

	(c) $\frac{-\pi}{2} < y < \frac{\pi}{2}$	
	(d) $\mathbf{y} \in \left\{\frac{-\pi}{2}, \frac{\pi}{2}\right\}$	
72	Assertion (A) All trigonometric functions have their inverses over their	1
	respective domains.	
	Reason (R) The inverse of $\tan^{-1} x$ exists for some $x \in R$	
	(a) Both A and R are true and R is the correct explanation of A.	
	(c) A is true but R is false.	
	(d) A is false but R is true.	
73	The value of sin(tan ⁻¹ x) where $ x < 1$	1
	(a) $\frac{x}{\sqrt{1-x^2}}$ (b) $\frac{1}{\sqrt{1-x^2}}$	
	$(c) = \frac{1}{(c)}$ $(d) = \frac{x}{(c)}$	
	$\sqrt{1+x^2}$ $\sqrt{1+x^2}$	
74	$\left[\sin^{-1}\frac{\pi}{3} + \sin^{-1}\left(\frac{1}{2}\right)\right]$ is equal to	1
	(a) 1	
	(b) $\frac{1}{2}$	
	(c) $\frac{1}{3}$	
	(d) $\frac{1}{4}$	
75	Simplest form of $\tan^{-1}\left(\frac{\sqrt{1+\cos x} + \sqrt{1-\cos x}}{\sqrt{1+\cos x} - \sqrt{1-\cos x}}\right), \ \pi < x < \frac{3\pi}{2}$	1
	(a) $\frac{\pi}{4} - \frac{x}{2}$ (b) $\frac{3\pi}{2} - \frac{x}{2}$	
	(x) = x	
	(c) $-\frac{\pi}{2}$ (d) $\pi -\frac{\pi}{2}$	
76	Assertion (A) Range of $[\sin^{-1} x + 2 \cos^{-1} x]$ is $[0, \pi]$.	1
	Reason (R) Principal value branch of sin ⁻¹ x has range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	
	(a) Both A and R are true and R is the correct explanation of A.	
	(b) Both A and R are true but R is not the correct explanation of A.	
	(c) A is true but R is false. (d) A is false but R is true	
77	Assertion (A) The domain of the function sec ⁻¹ 2x is	1
	$(-\infty, -\frac{1}{2}] \cup [\frac{1}{2}, \infty)$	
	Reason (R) sec ⁻¹ (-2) = $-\frac{\pi}{2}$	
	(a) Both A and R are true and R is the correct explanation of A.	
	$(-\infty, -\frac{1}{2}] \cup [\frac{1}{2}, \infty)$ Reason (R) sec ⁻¹ (-2) = $-\frac{\pi}{4}$	
	(a) Both A and K are true and K is the correct explanation of A.	

	(b) Both A and R are true but R is not the correct explanation of A.	
	(c) A is true but R is false.	
70	(d) A is false but R is true. 17π	
/8	The value of sin ⁻¹ [sin $\left(-\frac{17\pi}{8}\right)$] is	1
	(a) $\frac{17\pi}{2}$	
	$(b)\frac{\pi}{2}$	
	$(c) = \pi$	
	$(c) = -\frac{1}{8}$	
	$(d)\frac{13\pi}{8}$	
79	The value of sin (cot ⁻¹ x) is	1
	(a) $\sqrt{1+x^2}$	
	(b) x	
	(c) $(1+x^2)^{\frac{-3}{2}}$	
	(d) $(1+x^2)^{\frac{-1}{2}}$	
80	If $\sin^{-1}x > \cos^{-1}x$, then x should lie in the interval	1
	(a) $\left(-1, \frac{-1}{\sqrt{2}}\right)$	
	$\begin{pmatrix} \sqrt{2} \end{pmatrix}$	
	(b) $\left(0, \frac{1}{\sqrt{2}}\right)$	
	$(\mathbf{c})\left(\frac{1}{1}\right)$	
	$\left(\sqrt{2}, 1 \right)$	
	(d) $\left(\frac{1}{\sqrt{2}}, 0\right)$	
81	The principal value of $\cos^{-1}[\cos 680^{\circ}]$ is	1
	A. 30° B. 40° C. 50° D. 60°	
	0.30 1.00	
82	$u = \sin^{-1}x$	1
	$\left(0,\frac{\pi}{2}\right)$	
	$(0,1) y = \sin x$	
	$\left(\frac{\pi}{2},0\right)$ $\left(\frac{\pi}{2},0\right)$ x	
	(2, 0) $(2, 0)$ $(1, 0)$	
	Port and the second as de	
	$y = \sin x \qquad (0, -1)$	
	$v = \sin^{-1}x + (0, -\frac{\pi}{2})$	
	Y' Graphs of $y = \sin x$ and $y = \sin^{-1}x$	
	as mirror images of each other in the line mirror of	
	A. $x + y = 0$ B. $x - y = 0$ D. Normal of the set of	
	$\mathbf{U} \cdot \mathbf{x} + 2\mathbf{y} = 0 \qquad \mathbf{D}.$ None of these	

83	Domain of the function $\cos^{-1}(2x - 1)$ is	1
	A. $(0,1)$ B. $[0,1)$ C. $(0,1)$ D. $[0,1]$	
84	The principal value of $\sin^{-1}(-\frac{1}{2})$ is	1
	A. $\frac{\pi}{2}$ B. $\frac{\pi}{4}$	
	C. $-\frac{\pi}{2}$ D. $\frac{\pi}{2}$	
	6 6	
85	The value of $\sin^{-1}\left[\cos\left(\frac{33\pi}{r}\right)\right]$ is	1
	$A_{\cdot}\frac{\pi}{2}$ B. $-\frac{\pi}{2}$	
	$C = \frac{5\pi}{\pi}$ D $-\frac{5\pi}{\pi}$	
86	10 The given figure shows the graph of	1
00	A. $y = \sin[\sin^{-1}(x)]$	-
	B. $y = \sin [\cos^{-1}(x)]$	
	C. $y = tan [tan-1(x)]$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Late it	
	$y = -\frac{\pi}{2}$	
	and the second of the second o	
	γ	
87	The value of $\cos^{-1}[\cos(\frac{7\pi}{6})]$ is	1
	A. $\frac{7\pi}{6}$	
	B. $\frac{\pi}{6}$	
	C. $\frac{5\pi}{2}$	
	$D = \frac{6}{7\pi}$	
	6	
88	The minimum value of n for which $1 (n) = \pi$	1
	$\tan^{-1}(\frac{\pi}{n}) > \frac{\pi}{4}$, $n \in \mathbb{N}$ is	
	A. 2 P. 3	
	C. 4	
	D. 5	
89	Domain of $f(x) = \sin^{-1}x + \cos x$	1
	A. [-I, I] B. (_1, 1)	
	C. R	
	D. $\mathbf{R} \cdot (-1, 1)$	
90	Write one branch of tan ⁻¹ x other than principal value branch.	1
	A. $\left[-\frac{3n}{2}, -\frac{n}{2}\right]$	
	B. $(-\frac{3\pi}{2}, -\frac{\pi}{2}]$	
	C. $(-\frac{3\bar{\pi}}{2}, -\frac{\bar{\pi}}{2})$	
	D. $\left[-\frac{2}{3\pi}, -\frac{2}{\pi}\right]$	
1		

ANSWERS:

Q. NO	ANSWER	MARKS
1	c) sec ⁻¹ x	1
2	c) [-1,1]	1
3	b) $-\pi/2$	1
4	a)x=1,y = 2	1
5	b)2 $\pi/5$	1
6	c)5 $\pi^2/4$, $\pi^2/8$	1
7	d)-2	1
8	a) $\pi/12$	1
9	c) $\pi/4$	1
10	d)1	1
11	Solution	1
	Ans:False	
	Let $\cos^{-1}\cos\frac{3\pi}{4} = x$	
	$\cos x = \cos \frac{5\pi}{4}$	
	$\cos x = \cos \left(2\pi - \frac{5\pi}{4}\right)$	
	$\cos x = \cos \frac{3\pi}{4}$	
	$x = \frac{3\pi}{4}$	
12	Solution:	1
	Ans: option c	
10	Cos ⁻¹ x is a decreasing function in its domain and is periodic in nature	
13	Solution:	1
	Given $\sin \frac{\pi}{3} + \cos \frac{\pi}{2}$	
	$\cos^{-1}x = \frac{1}{2} - \sin^{-1}\frac{1}{3}$	
	$x = \cos(\frac{\pi}{2} - \sin^{-1}\frac{\pi}{3})$	
	$x=\sin(\sin^{-1}\frac{1}{3})$	
	$x=\frac{1}{3}$	
	so the value of x is 1/3	
14	Solution:	1
15	The range of tan x is $(\frac{1}{2}, \frac{1}{2})$	1
12	The principal value branch of sec ⁻¹ x is $[0, \pi] - \{\frac{\pi}{2}\}$	T
16	Solution:	1
	Ans:(a)	
	Let $y=\tan^{-1}\sqrt{3}$	
	$\tan y = \sqrt{3} \pi$	
	$\tan y = \tan \frac{\pi}{3}$	
	$\gamma = \frac{\pi}{3}$	
	since the range of tan ⁻¹ x is $\left(\frac{-n}{2}, \frac{n}{2}\right)$	
	hence the principal value is $\frac{n}{3}$	
17	Solution:	1

	Ans:(c)	
	Given cos ⁻¹ (cos1540°) =cos ⁻¹ {cos(360*4+100°)}	
	$=\cos^{-1}\cos 100^{\circ}$ [Cos $(2\pi + \theta) = \cos \theta$	
	$=100^{\circ} \qquad [\cos^{-1}\cos\Theta=\Theta,\Theta\in[0,\pi]$	
	$\therefore \cos^{-1}(\cos 1540^\circ) = 100^\circ$	
18		1
	Ans: (c) The domain of $\sin^{-1}x$ is $\begin{bmatrix} -1 & 1 \end{bmatrix}$	
	Therefore $f(x)=\sin^{-1}(2x+3)$ for all x	
	Satisfying:- $1 < 2x - 3 < 1$	
	$-1+3 \le 2x-3+3 \le 1+3$	
	$2 \le 2x \le 4$	
	1 ≤ x ≤2	
	x ∈ [1,2]	
19	Solution:	1
	Ans(d)	
	Assertion: we know that all trigonometric functions have inverse over their	
	So assertion is incorrect	
	Beason(B) $\tan^{-1}B \rightarrow (\frac{-\pi}{2}, \frac{\pi}{2})$	
	i.e. the inverse of tap x exists for some $x \in \mathbb{R}$	
	so reason is correct.	
20	Answer: (a)	1
21	(c) [-1/2, 1/2]	1
22	(d) $\sqrt{(2/3)}$	1
23	(d) 1	1
24	(c) $3/\sqrt{2}$	1
25	(c) π/6	1
26	7	1
27	(d) $[-\sqrt{5}, -\sqrt{3}] \cup [\sqrt{3}, \sqrt{5}]$	1
28	(b) -2π/5	1
29	(c) [-1/2, 1/2]	1
30	(c) π/4	1
31	(c)	1
32	(d)	1
33	(b)	1
34	(a)	1
35	(a)	1
36	(b)	1
37	(b)	1
38	(d)	1
39	(a)	1
40	(d)	1
41	(c)	1
42	(d)	1
43	(b)	1
44	(c)	1

45	(a)	1
46	(a)	1
47	(c)	1
48	(c)	1
49	(d)	1
50	(a)	1
51	(a) $\frac{7\pi}{18}$	1
52	(c) π	1
53	$(a) - \frac{\pi}{3}$	1
54	(d) 0	1
55	(a) [1,2]	1
56	(c) [0,1]	1
57	(a) $2\cos^{-1}x$	1
58	(b) $4\pi - 10$	1
59	(d) $-1 \le x < \frac{1}{\sqrt{2}}$	1
60	(c) A is true but R is false	1
61	В	1
62	D	1
63	В	1
64	С	1
65	Α	1
66	C	1
67	Α	1
68	Α	1
69	В	1
70	D	1
71	(c) $\frac{-\pi}{2} < y < \frac{\pi}{2}$	1
72	(d)	1
73	(d)	1
74	(a)	1
75	(a)	1
76	(d)	1
77	(c)	1
78	(c)	1
79	(d)	1
80	(c)	1
81	В	1
82	В	1
83	D	1
84	С	1

85	D	1
86	A	1
87	C	1
88	C	1
89	A	1
90	С	1

<u>CHAPTER-2</u> <u>INVERSE T FUNCTION</u> <u>CLASS-XII</u> <u>02 MARKS TYPE QUESTIONS</u>

Q. NO	QUESTION	MARK
1.	$\cot^{-1} x = \cos^{-1}(-1) - \csc^{-1}(2/\sqrt{3})$	2
	Based on the above information find tan ⁻¹ ($\frac{1}{r}$) using the principal value of inverse	
	trigonometric function. Show your work.	
2.	Find the value of tan^2 (sec ⁻¹ 2) + cot ² (cosec ⁻¹ 3).	2
3.	If α = tan ⁻¹ (tan 5 $\pi/4$) and β = tan ⁻¹ (-tan 2 $\pi/3$), then establish a relation between α and β .	2
4.	Compute the value of $\tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3$.	2
5.	If cos (tan ⁻¹ x) = sin (cot ⁻¹ $\frac{3}{4}$) then solve for x.	2
6.	Let x, y, z $\in [-1,1]$ be such that $\sin^{-1}x + \sin^{-1}y + \sin^{-1}z = \frac{3\pi}{2}$ find the values of $x^{2020} + y^{2021} + z^{2022}$	2
7.	Draw the graph of sec ⁻¹ x and write the domain of sec ⁻¹ (2x+1)	2
8.	Evaluate the following question : $\tan^{-1}(\frac{\cos x}{1+\sin x}), \frac{-\pi}{2} < x < \frac{\pi}{2}$	2
9.	In a right angled triangle PQR b, p, h denote the base, perpendicular and hypotenuse respectively and $<$ QPR= Θ .Express sin ⁻¹ ($\frac{5}{13}$) in terms of other five trigonometric functions.	2
10.	Prove that $tan(cot^{-1}x)=cot(tan^{-1}x)$ state with the reason whether the equality is valid for all the values of x	2
11.	What is the principal value of sin ⁻¹ (- 2)	2
12.	Find the value of cot (tan ⁻¹ α + cot ⁻¹ α)	2
13.	Write the principal value of $tan^{-1}[sin(-\pi/2)]$	2
14.	Find x, $\sin^{-1}\frac{1}{3} + \cos^{-1}x = \frac{\pi}{2}$	2
15.	If sin $(\sin^{-1}15 + \cos^{-1}x) = 1$, then find the value of x.	2
16.	Find the value of $\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2}\right)\right]$ + $\tan^{-1}1$	2
17.	Evaluate $\sin^{-1}\left(\sin\frac{3\pi}{4}\right) + \cos^{-1}\left(\cos\frac{3\pi}{4}\right) + \tan^{-1}1$	2
18.	Find the domain of $y = \sin^{-1}(x^2 - 4)$	2
19.	Find the value of $\sin^{-1} \left[\cos \frac{33\pi}{5} \right]$.	2
20.	Show that $\sin^{-1}(2x\sqrt{1-x^2}) = 2\cos^{-1}x, \frac{1}{\sqrt{2}} \le x \le 1.$	2
21.	Simplify, $\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\left(\frac{1}{3}\right)$.	2
22.	Find the value of $\tan^{-1}[2\sin(2\cos^{-1}\frac{\sqrt{3}}{2})]$	2
23.	Find the value of $\tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) + \cot^{-1}\left(\frac{1}{\sqrt{3}}\right) + \tan^{-1}\left\{\sin\left(-\frac{\pi}{2}\right)\right\}$	2
24.	Find the principal value of $\tan^{-1}\sqrt{3} - \sec^{-1}(-2)$	2

25.	Find the value of $\tan(2\tan^{-1}\frac{1}{5})$	2
26.	Find the principal value of $\tan^{-1} 1 + \cos^{-1}(-\frac{1}{2})$	2
27.	If $\sin^{-1} x + \sin^{-1} y = 2\pi/3$, then find the value of $\cos^{-1} x + \cos^{-1} y$	2
28.	Find the domain of $\sin^{-1}(x^2-4)$	2
29.	Find the value of $\sin^{-1}(\cos 33\pi/5)$	2
30.	Write the principal value of $\cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right)$	2
31.	Write the domain and range (principal value branch) of the the following function $f(x) = \cos^{-1} x$	2
32.	Write the domain and range of tan ⁻¹ x	2
33.	Find the value of tan ⁻¹ [2 cos $(2 \sin^{-1} \frac{1}{2})$] + tan ⁻¹ 1	2
34.	Evaluate Sin ⁻¹ (sin $\frac{3\pi}{4}$) + cos ⁻¹ (cos $\frac{3\pi}{4}$) + tan ⁻¹ (1)	2
35.	Draw the graph of $f(x) = \sin^{-1}x$, $x \in \left[\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$ Also write the range of $f(x)$.	2
36.	Express $\tan^{-1}\left(\frac{\cos x}{1+\sin x}\right), \frac{-3\pi}{2} < x < \frac{\pi}{2}$, in simplest form.	2
37.	$-\pi/2$ $\pi/4$ $\pi/2$ X Which is greater than 1 and tan ⁻¹ 1?	2
38.	Find the value of $\tan^{-1}[\tan(\frac{5\pi}{6})] + \cos^{-1}[\cos(\frac{13\pi}{6})].$	2
39.	Express the expression in the simplest form $\tan^{-1}\left[\frac{x}{a+\sqrt{a^2-x^2}}\right]$	2
40.	Evaluate $\sin\left[\frac{\pi}{2} + \sin^{-1}\left(-\frac{1}{2}\right)\right]$.	2
41.	Give one real example which does not satisfy the property of inverse function.	2

Q. NO	ANSWER	MARKS
1.	$\cot^{-1} x = \cos^{-1}(-1) - \csc^{-1}(2/\sqrt{3})$	2
	or, $\cot^{-1} x = \pi - \pi/3 = 2\pi/3$	
	or, $\tan^{-1}(1/x) = 2 \pi/3$	
2.	tan ² (sec ⁻¹ 2) + cot ² (cosec ⁻¹ 3)	2
	$= \sec^{2}(\sec^{-1} 2) - 1 + \csc^{2}(\csc^{-1} 3) - 1$	
	$= \{\sec(\sec^{-1} 2)\}^2 + \{\csc(\csc^{-1} 3)\}^2 - 2$	
	$=(2)^{2}+(3)^{2}-2=11$	
3.	$ \begin{array}{ll} \alpha = \tan^{-1} (\tan 5 \pi/4) & \text{and } \beta = \tan^{-1} (-\tan 2 \pi/3) \\ = \tan^{-1} [\tan(\pi + \pi/4)] & = \tan^{-1} (-\tan(\pi - \pi/3)) \\ = \tan^{-1} [\tan \pi/4] & = \tan^{-1} (\tan \pi/3) \\ = \pi/4 & = \pi/3 \\ \pi = 4 \alpha & \pi = 3 \beta \end{array} $	2
4.	tan ⁻¹ 1 + tan ⁻¹ 2 + tan ⁻¹ 3	2
	$= \tan^{-1} 1 + \tan^{-1} \left(\frac{2+3}{1-3} \right)$	
	$= \tan^{-1} 1 + \tan^{-1}(-1)$	
	$=\pi/4$ $+3\pi/4$ $=\pi$	
5.	$\cos(\tan^{-1}x) = \sin(\cot^{-1}\frac{3}{2})$	2
	Let $\tan^{-1} x = \alpha$	
	Or, $x = \tan \alpha$	
	Or, $\cos \alpha = \frac{1}{\sqrt{1+x^2}}$	
	Or, $\alpha = \cos^{-1} \frac{1}{\sqrt{1-2}}$	
	Similarly let $\cot^{-1}\frac{3}{2} = \beta$	
	Similarly let $\cot \frac{\alpha}{4} = \beta$	
	$\frac{1}{10000000000000000000000000000000000$	
	Sin $p = 4/5$	
	Equating both the sides we get $\frac{1}{\sqrt{1+x^2}} = 4/5$	
	Squaring both sides $16(1 + x^2) = 25$	
6	$X = \pm \frac{3}{4}$	2
0.	For any x \in [-1,1],the maximum value of sin ⁻¹ x is, $\frac{\pi}{2}$ and it attains the value at x=1.	2
	: $\sin^{-1}x \le \frac{\pi}{2}$, $\sin^{-1}y \le \frac{\pi}{2}$, $\sin^{-1}z \le \frac{\pi}{2}$ for all x, y, z [-1,1]	
	$=\sin^{-1}x + \sin^{-1}y + \sin^{-1}z \le \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2}$ for all x, y, z \in [-1,1]	
	$= \sin^{-1}x + \sin^{-1}y + \sin^{-1}z \le \frac{3\pi}{2}$ for all x, y, z $\in [-1, 1]$	

ANSWERS:

	$1 1 1 1 1 3\pi$	
	\therefore sin ⁻¹ x+sin ⁻¹ y+sin ⁻¹ z= $\frac{1}{2}$	
	$\therefore \sin^{-1}x = \frac{\pi}{2}$, $\sin^{-1}y = \frac{\pi}{2}$, $\sin^{-1}z = \frac{\pi}{2}$	
	x = 1 $y = 1$ $z = 1$	
	$\frac{1}{2} \frac{1}{2} \frac{1}$	
7	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	2
/.	The graph of see 1y	2
	t t	
	p	
	$y = \sec^{-1}x$	
	The domain of sec-1x is($-\infty$,-1]U[1, ∞)	
	Therefore, sec-1(2x+1) is meaningful, if	
	$2x+1 \ge 1$ or $2x+1 \le -1$	
	$2x \ge 0$ or $2x \le -2$	
	$x \ge 0$ or $x \le -1$	
	x = 0 - 01, x = 1 $x = (-\infty - 1) \cup [0, \infty)$	
	Hence, the domain of cas $\frac{1}{2}x \pm 1$ is $(-\infty, -1] + 1(0, \infty)$	
-		2
8.	Solution:	Z
	$\tan -1(\frac{\cos x}{2}) = \tan -1\{\frac{\cos 2\frac{1}{2} - \sin 2\frac{1}{2}}{x + x + x + x}\}$	
	$(1+\sin x)$ $(\cos 2\frac{\pi}{2}+\sin 2\frac{\pi}{2}+2\sin \frac{\pi}{2}\cos \frac{\pi}{2})$	
	$=\{\frac{(\cos\frac{\pi}{2} - \sin\frac{\pi}{2})(\cos\frac{\pi}{2} + \sin\frac{\pi}{2})}{(\cos\frac{\pi}{2} + \sin\frac{\pi}{2})}\}$	
	$(\cos\frac{x}{2} + \sin\frac{x}{2})2$	
	$-\tan 1/\frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{2}$	
	$-\tan^2 \frac{1}{\cos^2 + \sin^2 \frac{1}{2}}$	
	$1-\tan\frac{x}{2}$	
	$= \tan -1\{\frac{1}{1+tan_{2}^{x}}\}$	
	$= \tan -1 \left\{ \tan \left(\frac{\pi^2}{2} - \frac{x}{2} \right) \right\}$	
	πx	
	$ = \frac{1}{4} - \frac{1}{2} \qquad \qquad \frac{1}{2} < x < \frac{1}{2} = \frac{1}{4} < -\frac{1}{2} < \frac{1}{4} = 0 < \frac{1}{4} - \frac{1}{2} < \frac{1}{4} < < \frac{1}{4}$	
	$\left[\frac{\pi}{2}\right]$	
0	solution:	2
9.	Let h n and h denote the base perpendicular and	2
	by potentise of a right triangle POR and let $< OPR-A$	
	$\frac{1}{2}$	
	If $\sin 1 - \frac{1}{13}$ is to be expressed in terms of other five inverse trigonometric, then	
	we construct a right triangle with perpendicular p=5 and hypotenuse h=13.trhe	
	base b of this triangle is b=12.	
	$\Theta = \sin -1 \frac{5}{2} = \cos -1 \frac{12}{2} = \tan -1 \frac{5}{2} = \cot -1 \frac{12}{2} = \sec -1 \frac{13}{2} = \csc -1 \frac{13}{2}$	
	13 13 12 5 12 5	
10.	Solution: π	2
	We know that $\tan 1x + \cot 1 = \frac{\pi}{2}$	
	Or, $\cot 1x = \frac{\pi}{2} - \tan 1x$ for all x R	
	$\frac{2}{1}$ tan(cot_1x)-tan($\frac{\pi}{2}$ -tan_1x) for all xcP	
	=cot(tan-1x) for all x $\in \mathbb{R}$	
	Clearly, the equality holds for all x R as tan-1x+cot-1x= $\frac{\pi}{2}$	

	11.	$\sec^{-1}(-2) = \pi - \sec^{-1}(2)$	2
		[∵ sec ⁻¹ (- x) = $π$ − sec ⁻¹ (x); x ≥ 1	
		$= \pi - \sec^{-1}(\sec \pi 3) = \pi - \pi 3$	
		[: sec $\pi 3 = 2$ and sec ⁻¹ (sec θ) = θ ; $\forall \theta \in [0, \pi] - {\pi 2}$]	
		$= 2\pi 3$	
		which is the required principal value.	
	12.	Given that: cot $(\tan^{-1} \alpha + \cot^{-1} \alpha)$	2
		= cot ($\pi/2$) (since, tan ⁻¹ x + cot ⁻¹ x = $\pi/2$)	
		= cot (180°/2) (we know that cot $90^\circ = 0$)	
		= cot (90°)	
		= 0	
		Therefore, the value of cot $(\tan^{-1} \alpha + \cot^{-1} \alpha)$ is 0.	
	13.	We have, $\tan^{-1}\left[\sin\left(-\frac{\pi}{2}\right)\right]$	2
		$= \tan^{-1} \left[-\sin\left(\frac{\pi}{2}\right) \right] \left[\begin{array}{c} \because \sin^{-1}(-x) = -\sin^{-1}x, \\ x \in (-1, 1) \end{array} \right]$	
		$= \tan^{-1}(-1) \qquad \qquad \left[\because \sin\left(\frac{\pi}{2}\right) = 1 \right]$	
		$= \tan^{-1} \left(-\tan \frac{\pi}{4} \right) \qquad \qquad \left[\because \tan \frac{\pi}{4} = 1 \right]$	
		$= \tan^{-1} \left[\tan \left(\frac{-\pi}{4} \right) \right] = \frac{-\pi}{4}$	
		$\left[\because \tan^{-1}(\tan\theta) = \theta; \forall \theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \right]$	
	14.	$\sin^{-1}\frac{1}{3} + \cos^{-1}x = \frac{\pi}{2}$	2
		$\operatorname{Or} \sin^{-1} \frac{1}{3} + \frac{\pi}{2} - \sin^{-1} x = \frac{\pi}{2}$	
		$\operatorname{Or} \sin^{-1} \frac{1}{3} = \sin^{-1} x$	
		0r x=1/3	
_ L		•	

15.	Given, $\sin\left(\sin^{-1}\frac{1}{x} + \cos^{-1}x\right) = 1$	2
	$\Rightarrow \qquad \sin^{-1} - + \cos^{-1} x = \sin^{-1} (1)$	
	$[\because \sin \theta = x \Longrightarrow \theta = \sin^{-1} x]$	
	$\Rightarrow \sin^{-1}\frac{1}{5} + \cos^{-1}x = \sin^{-1}\left(\sin\frac{\pi}{2}\right) \left[\because\sin\frac{\pi}{2} = 1\right]$	
	$\Rightarrow \sin^{-1}\frac{1}{5} + \cos^{-1}x = \frac{\pi}{2}$	
	$\Rightarrow \qquad \sin^{-1}\frac{1}{5} = \frac{\pi}{2} - \cos^{-1}x$	
	$\implies \qquad \sin^{-1}\frac{1}{5} = \sin^{-1}x$	
	$\left[::\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}; x \in [-1, 1]\right]$	
	$\therefore \qquad x = \frac{1}{5}$	
16.	We have	2
	$\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2}\right)\right] + \tan^{-1}1$	
	$=\tan^{-1}\left[2\cos\left(2\sin^{-1}\left(\sin\frac{\pi}{6}\right)\right)\right] + \tan^{-1}\left(\tan\frac{\pi}{4}\right)$	
	$=\tan^{-1}\left[2\cos\left(2*\frac{\pi}{6}\right)\right]+\frac{\pi}{4}$	
	$=\frac{\pi}{4}+\frac{\pi}{4}$	
	$=\frac{\dot{\pi}}{2}$	
17.	$\sin^{-1}\left(\sin\frac{3\pi}{4}\right) + \cos^{-1}\left(\cos\frac{3\pi}{4}\right) + \tan^{-1}1$	2
	$=\sin^{-1}\left(\sin\left(\pi-\frac{\pi}{4}\right)\right)+\frac{3\pi}{4}+\frac{\pi}{4}$	
	$=\sin^{-1}(\sin\frac{\pi}{2}) + \pi = \frac{5\pi}{2}$	
18.	We have, $y = \sin^{-1}(x^2 - 4)$	2
	$-1 \le x^2 - 4 \le 1$	
	$-1 + 4 \le x^2 \le 1 + 4$ $3 < x^2 < 5$	
	$\sqrt{3} \le x \le \sqrt{5}$ So domain of y is $\left[-\sqrt{5}, -\sqrt{3}\right] \cup \left[\sqrt{3}, \sqrt{5}\right]$	
19.	$\operatorname{let} y = \sin^{-1} \left[\cos \frac{33\pi}{5} \right]$	2
	$=\sin^{-1}\left(\cos\frac{3\pi}{5}\right)$	
	$=\sin^{-1}\left(\cos\left(\frac{\pi}{2}+\frac{\pi}{10}\right)\right)$	
	$=\sin^{-1}\left(-\sin\frac{\pi}{10}\right) = -\frac{\pi}{10}$	
20.	$\sin^{-1}\left(2x\sqrt{1-x^{2}}\right) = 2\cos^{-1}x$	2
	On putting $x = \cos t$ where $t = \cos^{-1} x$	
	L.H.S = $\sin^{-1}(2\cos t\sqrt{1-\cos^2 t})$	
	$=\sin^{-1}(\sin 2t)$	

	$=2t=2\cos^{-1}x = R.H.S$	
21.	$\frac{9\pi}{9} - \frac{9}{9} \sin^{-1}\left(\frac{1}{1}\right)$	2
	$8 4^{3111} (3)$	
	$=\frac{2}{4}\left[\frac{\pi}{2}-\sin^{-1}\left(\frac{\pi}{3}\right)\right]$	
	$=\frac{9}{4}\cos^{-1}\frac{1}{2}=\frac{9}{4}\sin^{-1}\frac{2\sqrt{2}}{2}$	
22.	$\tan^{-1}[2\sin(2\cos^{-1}\frac{\sqrt{3}}{\sqrt{3}})]$	2
	$= \tan^{-1} [2 \sin(2, \frac{\pi}{2})]$	
	$= \tan^{-1} [2 \sin (\frac{\pi}{6})]$	
	$= \tan^{-1} \sqrt{3}$	
	$=\frac{\pi}{2}$	
23.	$\frac{3}{\tan^{-1}(-\frac{1}{2}) + \cot^{-1}(\frac{1}{2}) + \tan^{-1}\left(\sin(-\frac{\pi}{2})\right)}$	2
	$\operatorname{tan} \left(\begin{array}{c} \sqrt{3} \end{array} \right) + \operatorname{tan} \left(\begin{array}{c} \sin\left(\begin{array}{c} 2 \end{array} \right) \right)$	_
	$= -\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) + \cot^{-1}\left(\frac{1}{\sqrt{3}}\right) - \tan^{-1}1$	
	$= -\frac{\pi}{4} + \frac{\pi}{2} - \frac{\pi}{4}$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$=-\frac{12}{12}$	
24.	$\tan^{-1}\sqrt{3} - \sec^{-1}(-2)$	2
	$=\frac{\pi}{2}-(\pi-\sec^{-1}(2))$	
	$\frac{3}{\pi}$ π	
	$=\frac{1}{3}-\frac{1}{3}+\frac{1}{3}$	
	$=-\frac{\pi}{2}$	
25.	$\frac{3}{\tan(2\tan^{-1}\frac{1}{2})}$	2
	$\frac{1}{5}$	2
26.	$\tan^{-1} 1 + \cos^{-1}(-\frac{1}{2})$	2
	$=\frac{\pi}{2}+\pi-\frac{\pi}{2}$	
	4 3	
	11π	
	$=\frac{12}{12}$	
27.	$(\pi/2 - \cos^{-1} x) + (\pi/2 - \cos^{-1} x) = 2\pi/3$, implies $\cos^{-1} x + \cos^{-1} y = \pi/3$	2
28	$-1 \le v^2 - 4 \le 1$ => $3 \le v^2 \le 5$ => $v \in [-\sqrt{5} - \sqrt{3}]$ II $[\sqrt{3} - \sqrt{5}]$	2
20.		
29.	$\sin^{-1}(\cos 33\pi/5) = \sin^{-1}(\cos(6\pi + 3\pi/5)) = \sin^{-1}(\cos(3\pi/5)) = \pi/2 - \cos^{-1}(\cos(3\pi/5))$	2
	$=\pi/2-3\pi/5 = -\pi/10$	

30.	We have , $\cos^{-1}\left(\frac{1}{2}\right) = \cos^{-1}\left(\cos\frac{\pi}{3}\right) = \frac{\pi}{3}$	2
	$\sin^{-1}\left(\frac{1}{2}\right) = \sin^{-1}\left(\sin\frac{\pi}{6}\right) = \frac{\pi}{6}$	
	$\cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} + 2\left(\frac{\pi}{6}\right) = \frac{2\pi}{3}$	
31.	since, $\cos: [0, \pi] \rightarrow [-1, 1]$ is one one and onto function.	2
	so its inverse exists and is given by $\cos^{-1}: [-1,1] \rightarrow [0,\pi]$	
	Domain = $\begin{bmatrix} -1, 1 \end{bmatrix}$ and Range = $\begin{bmatrix} 0, \pi \end{bmatrix}$	
32.	Domain = R	2
	Range = $\left(\frac{-\pi}{n}, \frac{\pi}{n}\right)$	
33.	π	2
24		2
34.	$\frac{5\pi}{4}$	2
35.	$\frac{1}{1}$	2
	$\pi/4$ $(\sqrt{2}, \frac{\pi}{4})$	
	$X' \leftarrow 1 + 1 \rightarrow X$	
	$(1 - \pi)^{-\pi/4}$	
	$\left(\overline{\sqrt{2}}, \overline{4}\right)$	
	Range = $[\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}]$	
36	π χ	2
36.	$\frac{\pi}{4} + \frac{x}{2}$	2
36. 37.	$\frac{\pi}{4} + \frac{x}{2}$ We have,	2 2
36. 37.	$\frac{\pi}{4} + \frac{x}{2}$ We have, $1 > \frac{\pi}{4}$	2 2
36.	$\frac{\pi}{4} + \frac{x}{2}$ We have, $1 > \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{4}$	2 2
36.	$\frac{\pi}{4} + \frac{x}{2}$ We have, $1 > \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{4}$	2
36.	$\frac{\pi}{4} + \frac{x}{2}$ We have, $1 > \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{4}$ $\tan 1 > 1 > \frac{\pi}{4}$	2
36.	$\frac{\pi}{4} + \frac{x}{2}$ We have, $1 > \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{4}$ $\tan 1 > 1$ $\tan 1 > 1 > \frac{\pi}{4}$ $\tan 1 > 1 > \frac{\pi}{4}$ $\tan 1 > 1 > \frac{\pi}{4}$	2
36.	$\frac{\pi}{4} + \frac{x}{2}$ We have, $1 > \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{4}$ $\tan 1 > 1$ $\tan 1 > 1 > \frac{\pi}{4}$ $\tan 1 > 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$	2
36.	$\frac{\pi}{4} + \frac{x}{2}$ We have, $1 > \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{4}$ $\tan 1 > 1$ $\tan 1 > 1 > \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{1}$	2
36. 37. 38.	$\frac{\pi}{4} + \frac{x}{2}$ We have, $1 > \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{4}$ $\tan 1 > 1$ $\tan 1 > 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{1}$	2 2 2 2 2
36. 37. 38.	$\frac{\pi}{4} + \frac{x}{2}$ We have, $1 > \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{4}$ $\tan 1 > 1$ $\tan 1 > 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{4}$	2 2 2 2
36. 37. 38.	$\frac{\pi}{4} + \frac{x}{2}$ We have, $1 > \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{4}$ $\tan 1 > 1$ $\tan 1 > 1 > \frac{\pi}{4}$ $\tan 1 > 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \tan^{-1}[\tan(\frac{5\pi}{6})] + \cos^{-1}[\cos(\frac{13\pi}{6})]$ $\tan^{-1}[-\tan(\frac{\pi}{6})] + \cos^{-1}[\cos(\frac{\pi}{6})]$	2 2 2 2
36. 37. 38.	$\frac{\pi}{4} + \frac{x}{2}$ We have, $1 > \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{4}$ $\tan 1 > 1$ $\tan 1 > 1 = \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \tan^{-1}[\tan(\frac{5\pi}{6})] + \cos^{-1}[\cos(\frac{13\pi}{6})]$ $\tan^{-1}[-\tan(\frac{\pi}{6})] + \cos^{-1}[\cos(\frac{\pi}{6})]$ $\tan^{-1}[\tan(-\frac{\pi}{6})] + \frac{\pi}{6}$	2 2 2 2
36. 37. 38.	$\frac{\pi}{4} + \frac{x}{2}$ We have, $1 > \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{4}$ $\tan 1 > 1 = \frac{\pi}{4}$ $\tan 1 > 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\tan \sqrt{11}}{4}$ $\tan 1 > \tan \frac{\pi}{4}$ $\tan 1 > \tan \sqrt{11}$ $\tan 1 > \tan \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{4}$ $\tan 1 = \tan \frac{\pi}{4}$ $\tan 1 $	2 2 2 2
36. 37. 38.	$\frac{\pi}{4} + \frac{x}{2}$ We have, $1 > \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{4}$ $\tan 1 > 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \tan^{-1}[\tan(\frac{5\pi}{6})] + \cos^{-1}[\cos(\frac{13\pi}{6})]$ $\tan^{-1}[-\tan(\frac{\pi}{6})] + \cos^{-1}[\cos(\frac{\pi}{6})]$ $\tan^{-1}[\tan(-\frac{\pi}{6})] + \frac{\pi}{6}$ $-\frac{\pi}{6} + \frac{\pi}{6}$	2 2 2 2
36. 37. 38.	$\frac{\pi}{4} + \frac{x}{2}$ We have, $1 > \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{4}$ $\tan 1 > 1 = \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \tan^{-1}[\tan(\frac{5\pi}{6})] + \cos^{-1}[\cos(\frac{13\pi}{6})]$ $\tan^{-1}[-\tan(\frac{\pi}{6})] + \cos^{-1}[\cos(\frac{\pi}{6})]$ $\tan^{-1}[\tan(-\frac{\pi}{6})] + \frac{\pi}{6}$ $-\frac{\pi}{6} + \frac{\pi}{6}$	2 2 2
36. 37. 38. 38. 39.	$\frac{\pi}{4} + \frac{x}{2}$ We have, $1 > \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{4}$ $\tan 1 > 1 = \tan \frac{\pi}{4}$ $\tan 1 > 1 = \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \tan \frac{1}{4}$ $\tan 1 > \tan \frac{1}{4}$ $\tan^{-1}[\tan(\frac{5\pi}{6})] + \cos^{-1}[\cos(\frac{13\pi}{6})]$ $\tan^{-1}[-\tan(\frac{\pi}{6})] + \cos^{-1}[\cos(\frac{\pi}{6})]$ $\tan^{-1}[\tan(-\frac{\pi}{6})] + \frac{\pi}{6}$ $-\frac{\pi}{6} + \frac{\pi}{6}$ 0 $\tan^{-1}[\frac{x}{a + \sqrt{a^2 - x^2}}]$	2 2 2 2 2 2
36. 37. 38. 38. 39.	$\frac{\pi}{4} + \frac{x}{2}$ We have, $1 > \frac{\pi}{4}$ $\tan 1 > \tan \frac{\pi}{4}$ $\tan 1 > 1 \tan \frac{\pi}{4}$ $\tan 1 > 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan 1 > \frac{\pi}{4}$ $\tan^{-1}[\tan(\frac{5\pi}{6})] + \cos^{-1}[\cos(\frac{13\pi}{6})]$ $\tan^{-1}[-\tan(\frac{\pi}{6})] + \cos^{-1}[\cos(\frac{\pi}{6})]$ $\tan^{-1}[\tan(-\frac{\pi}{6})] + \frac{\pi}{6}$ $-\frac{\pi}{6} + \frac{\pi}{6}$ 0 $\tan^{-1}[\frac{x}{a + \sqrt{a^2 - x^2}}]$ $\tan^{-1}[\frac{x}{a + \sqrt{a^2 - x^2}}]$	2 2 2 2 2 2

	$\tan^{-1}\left[\frac{a\sin\theta}{a(1+\cos\theta)}\right]$ $\tan^{-1}\left[\tan\frac{\theta}{2}\right]$ $\frac{\theta}{2}$ $\frac{1}{2}\sin^{-1}\left[\left(\frac{x}{a}\right)\right]$	
40.	$\sin\left[\frac{\pi}{3} + \sin^{-1}\left(-\frac{1}{2}\right)\right].$	2
	$\sin\left[\frac{\pi}{3}-\frac{\pi}{6}\right].$	
	$\sin\left[\frac{\pi}{6}\right]$.	
	$\frac{1}{2}$	
	2	
41.	$f: Parents \rightarrow Children$	2
	Children = { Pinki, Gopal, Rajan }	
	$\mathbf{C} \rightarrow \mathbf{L} = \mathbf{L} = \mathbf{J} - \mathbf{D} = \mathbf{J}$	

<u>CHAPTER-2</u> INVERSE TROGONOMETRIC FUNCTION <u>CLASS-XII</u> 03 MARKS TYPE QUESTIONS

	US WIARKS I FFE QUESTIONS	1
Q. NO	QUESTION	MARK
1.	Find the number of real solutions of the equation $\sqrt{1 + \cos 2x} = \sqrt{2} \cos^{-1}(\cos x)$ in $[\pi/2, \pi]$	3
2.	Express tan($\cos^{-1} x$) in terms of x only and hence evaluate tan ($\cos^{-1}\frac{8}{17}$).	3
3.	Is tan ($\cot^{-1} x$) = $\cot(\tan^{-1} x)$? Justify your answer.	3
4.	$\tan^{-1}x + \tan^{-1}y = \pi/4$; xy < 1, then write the value of x + y + xy.	3
5.	write the value of $\cos^{-1}(-1/2) + 2 \sin^{-1}(1/2)$.	3
6.	Write the value of tan (2 tan ⁻¹ 1/5)	3
7.	$\tan^{-1}x + \tan^{-1}y = \pi/4$; xy < 1, then write the value of x + y + xy.	3
8.	write the value of $\cos^{-1}(-1/2) + 2 \sin^{-1}(1/2)$.	3
9.	Write the value of tan (2 tan ⁻¹ 1/5)	3
10.	Evaluate $3\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) + 2\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) + \cos^{-1}0$	3
11.	Express $\tan^{-1}\left(\frac{\cos x}{1-\sin x}\right)$, $\frac{-3\pi}{2} < x < \frac{\pi}{2}$, in the simplest form.	3
12.	Write in simplest form $\tan^{-1}\left(\frac{\sqrt{1-\cos x}}{\sqrt{1-\cos x}}\right), 0 < x < \pi.$	3
13.	Simplify	
	$\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}, x < a$.	3
14.	Simplify $\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right), \text{ where, } x \in \left(0, \frac{\pi}{4}\right)$	3
15.	Prove that, $2 \tan^{-1} \left(\sqrt{\frac{a-b}{a+b}} \tan \frac{x}{2} \right) = \cos^{-1} \left(\frac{a \cos x+b}{a+b \cos x} \right)$	3
16.	Prove the following: $\cos[\tan^{-1}{\sin(\cot^{-1}x)}] = \sqrt{\frac{1+x^2}{2+x^2}}$	3
17.	Prove that $\tan^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right) = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x.$	3
18.	Prove that $:\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$	3
19.	Find the value of $\tan \frac{1}{2} \left[\sin^{-1} \frac{2x}{1+x^2} + \cos^{-1} \frac{1-y^2}{1+y^2} \right], x < 1, y > 0$ and	3
20	xy <l< td=""><td>2</td></l<>	2
20.	$\tan^{-1}\left(\frac{\sqrt{a-x}}{\sqrt{a+x}}\right)$	5
21	while the following functions in simplest form (x, y)	2
21.	Express $\tan^{-1}\left(\frac{\cos x - \sin x}{\cos x + \sin x}\right)$, x< π in the simplest form.	3
22.	If $\alpha = \sin^{-1}x + \cos^{-1}x - \tan^{-1}x$, $x \ge 0$, then find the smallest interval in which α lies	3
23		2
25.	Solve for x : $\cos(2\sin^{-1}x) = \frac{1}{9}$	

24.	Evaluate:	3
	$\tan^{-1}(-\frac{1}{\sqrt{3}}) + \cot^{-1}(\frac{1}{\sqrt{3}}) + \tan^{-1}[\sin(-\frac{\pi}{2})]$	
25.	A right angled triangle ABC is given here. With the help of inverse trigonometric function, prove that $ \begin{bmatrix} A & H \\ B \\ C \\ C$	3
26.	Let us define a mapping from $f: A \rightarrow B$ A R R R R R R R R	3

ANSWERS:

Q. NO	ANSWER	MARKS
1.	$\sqrt{1 + \cos 2x} = \sqrt{2} \cos^{-1}(\cos x)$, $[\pi/2, \pi]$	3
	$\Rightarrow \sqrt{1 + 2\cos^2 x - 1} = \sqrt{2}\cos^{-1}(\cos x)$	
	$\Rightarrow \sqrt{2} \cos x = \sqrt{2} \cos^{-1}(\cos x)$	
	$\Rightarrow \cos x = x$ which is not true for any $x \in [\pi/2, \pi]$	
	Hence, no real solution exists in the given interval.	
2.	Let $\cos^{-1} x = \theta \implies x = \cos \theta$	3
	Now $\sin \theta = \sqrt{1 - x^2}$	
	So, $\tan \theta = \frac{\sin \theta}{2} = \frac{\sqrt{1-x^2}}{2}$	
	Hence, $\tan\left(\cos^{-1}\frac{8}{17}\right) = \frac{\sqrt{1 - (\frac{8}{17})^2}}{\frac{8}{17}} = \frac{\frac{15}{17}}{\frac{8}{17}} = \frac{15/8}{17}$	
3.	Let $\cot^{-1} x = \theta$,	3
	$X = \cot \theta$	
	$= \tan \left(\pi / 2 - \theta \right)$	
	$Ian^{-1}x = (\pi / 2 - \theta)$	
	So, $tan(cot^{-1} x) = tan \theta = cot(\pi/2 - \theta) = cot(\pi/2 - cot^{-1} x) = cot$	
	(Tan ⁻¹ x)	
	This soull's is used of for all used on a for since tend 1. and set 1.	
	This equality is valid for all values of x since $\tan \frac{1}{x}$ and $\cot \frac{1}{x}$	
4.	We have $a_1 = a, a_2 = a + d, a_3 = a + 2d$	3
	And, $d = a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = \dots = a_n - a_{n-1}$	
	Given that,	
	$\tan\left[\tan^{-1}\left(\frac{a}{1+a_{1}a_{2}}\right) + \tan^{-1}\left(\frac{a}{1+a_{2}a_{3}}\right) + \tan^{-1}\left(\frac{a}{1+a_{3}a_{4}}\right) + \dots \right]$	
	$= \tan^{-1} \left[\tan^{-1} \left(\frac{a_2 - a_1}{1 + a_1 a_2} \right) + \tan^{-1} \left(\frac{a_3 - a_2}{1 + a_2 a_3} \right) + \dots + \tan^{-1} \left(\frac{a_n - a_1}{1 + a_n a_2} \right) \right]$	-
	$= \tan\left[\left(\tan^{-1}a_2 - \tan^{-1}a_1\right) + \left(\tan^{-1}a_3 - \tan^{-1}a_2\right) + \dots + \left(\tan^{-1}a_{12} - \tan^{-1}a_{12}\right) + \dots + \left(\tan$	
	$= \tan\left[\tan^{-1}a_n - \tan^{-1}a_1\right]$	
	$Scince, \tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + xy} \right)$	
	$= \tan \left[\tan^{-1} \left(\frac{a_n - a_1}{1 + a_1 a_n} \right) \right]$	
	$\left[scince, \tan\left(\tan^{-1}x\right) = x\right]$	
	$= \frac{a_n - a_1}{a_n - a_1}$	
	$1 + a_1 a_n$	

5	Solution:	3
Э.	The sum of three angles of triangle is π	•
	$A+B+C=\pi$	
	\Rightarrow cot ⁻¹ 3+cot ⁻¹ 2+C= π	
	$\rightarrow \cot^{-1} + C = \pi$ { $\cot^{-1} x + \cot^{-1} x +$	
	$\frac{3+2}{2} + \frac{3+2}{2} + 3+$	
	$\Rightarrow \cot^{13}_{5} + C = \pi$	
	$\Rightarrow \cot^{-1}1 + C = \pi$	
	$\Rightarrow \frac{\pi}{4} + C = \pi$	
	$\overset{4}{\rightarrow} C - \pi - \frac{\pi}{2} - \frac{3\pi}{2}$	
	$\rightarrow C - \pi^{-} \frac{1}{4} - \frac{1}{4}$	
6.	Solution:	3
	The given equation is;	
	$\cos(\tan^{-1}x) = \sin(\cot^{-1}\frac{3}{4})$	
	$\Rightarrow \cos(\tan^{-1}x) = \cos(\frac{\pi}{2} - \cot^{-1}\frac{3}{4}) \qquad [\sin\Theta = \cos(\frac{\pi}{2} - \Theta)]$	
	\Rightarrow cos(tan ⁻¹ x)=cos(tan ⁻¹ / ₋₁) [tan ⁻¹ x+cot ⁻¹ = $\frac{\pi}{2}$]	
	\rightarrow tap ⁻¹ v-tap ^{-1³}	
	\rightarrow tdi x -tdi $\frac{1}{4}$	
	$\Rightarrow \chi = \frac{3}{4}$	
7.	Given, $\tan^{-1} x + \tan^{-1} y = \frac{\pi}{2}$, $xy < 1$	3
	4	
	We know that,	
	$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x + y}{1 - xy} \right), xy < 1$	
	$\therefore \tan^{-1}\left(\frac{x+y}{1-xy}\right) = \frac{\pi}{4} \implies \frac{x+y}{1-xy} = \tan\frac{\pi}{4}$	
	$\Rightarrow \qquad \frac{x+y}{1-xy} = 1 \qquad \left[\because \tan\frac{\pi}{4} = 1\right]$	
	$\Rightarrow \qquad x + y = 1 - xy$	
	$\therefore \qquad x + y + xy = 1$	

8. We have,
$$\cos^{-1}\left(\frac{-1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right)$$

$$= \left[\pi - \cos^{-1}\left(\frac{1}{2}\right)\right] + 2\sin^{-1}\left(\frac{1}{2}\right)$$

$$[:\cos^{-1}(-x) = \pi - \cos^{-1} x; \forall x \in [-1, 1]]$$

$$= \left[\pi - \cos^{-1}\left(\cos\frac{\pi}{3}\right)\right] + 2\sin^{-1}\left(\sin\frac{\pi}{6}\right)$$

$$[:\cos\frac{\pi}{3} = \frac{1}{2} \text{ and } \sin\frac{\pi}{6} = \frac{1}{2}\right]$$

$$= \left[\pi - \frac{\pi}{3}\right] + 2x\frac{\pi}{6}$$

$$\left[\frac{:\cos^{-1}(\cos\theta) = \theta; \forall \theta \in [0,\pi]}{and \sin^{-1}(\sin\theta) = \theta; \forall \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]}\right]$$

$$= \frac{2\pi}{3} + \frac{\pi}{3} = \frac{2\pi + \pi}{3} = \pi$$
9. $\tan\left(2\tan^{-1}\frac{1}{5}\right) = \tan\left[\tan^{-1}\left(\frac{2x}{1-x^{2}}\right); -1 < x < 1\right]$

$$= \tan\left[\tan^{-1}\left(\frac{2x \cdot 3}{24}\right)\right] = \tan\left[\tan^{-1}\left(\frac{51}{1-(\frac{1}{5})^{2}}\right)\right]$$

$$\left[\frac{:2\tan^{-1}x = \tan^{-1}\left(\frac{2x}{1-x^{2}}\right); -1 < x < 1\right]$$

$$= \tan\left[\tan^{-1}\left(\frac{2x \cdot 3}{24}\right)\right] = \tan\left[\tan^{-1}\left(\frac{51}{1-(\frac{5}{2})^{2}}\right] = \frac{5}{12}$$

$$\left[\frac{10.}{3\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) + 2\cos^{-1}\left(\cos\frac{\pi}{2}\right) + \cos^{-1}\left(\cos\frac{\pi}{2}\right)}{3\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) + 2\cos^{-1}\left(\cos\frac{\pi}{2}\right) + \cos^{-1}\left(\cos\frac{\pi}{2}\right)}$$

$$= 3\frac{\pi}{4} + 2 + \frac{\pi}{6} + \frac{\pi}{2}$$

$$= \frac{19\pi}{12}$$
11. We have $\tan^{-1}\left(\frac{\cos \pi}{4} - \frac{\pi}{2}\right)\cos\left(\frac{\pi}{4} - \frac{\pi}{2}\right)$

$$= \tan^{-1}\left[\frac{2\sin\left(\frac{\pi}{4} - \frac{\pi}{2}\right)\cos\left(\frac{\pi}{4} - \frac{\pi}{2}\right)}{1 - \cos\left(\frac{\pi}{2} - \frac{\pi}{2}\right)}$$

$$= \tan^{-1}\left[\frac{2\sin\left(\frac{\pi}{4} - \frac{\pi}{2}\right)\cos\left(\frac{\pi}{4} - \frac{\pi}{2}\right)}{1 - \cos\left(\frac{\pi}{2} - \frac{\pi}{2}\right)}$$

$$= \tan^{-1}\left[\tan\left(\frac{\pi}{4} - \frac{\pi}{2}\right)\right]$$

$$= \tan^{-1}\left[\tan\left(\frac{\pi}{4} - \frac{\pi}{2}\right)\right]$$

$$= \tan^{-1}\left[\tan\left(\frac{\pi}{4} - \frac{\pi}{2}\right)\right]$$

	$= 90^{0} + 90^{0}$ $= 180^{0}$	
26.	It is one one onto. So inverse exists. $2x = \sin^{-1}y$ $x = \frac{1}{2} \sin^{-1}y$ Domain = { $\frac{1}{\sqrt{2}}$, 0, 1 }, Range = { 0, $\frac{\pi}{8}$, $\frac{\pi}{4}$ }	3

CHAPTER-2 INVERSE T FUNCTION CLASS-XII 04 MARKS TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	Two men on either side of a flag staff of 30 metres high from the level of eye observe its top at the angles of elevation α and β respectively (as shown in the figure above). The distance between the two men is $40\sqrt{3}$ metres and the distance between the first person A and the flag staff is $30\sqrt{3}$ metres. Based on the above information answer the following questions.	4
	a) Find $\angle QAR$ and $\angle AQR$. b) Find $\angle ARQ$.	
	c) Find the principal value of sin ⁻¹ { sin($\alpha + \frac{2\pi}{3}$) }	
	d) Find the principal value of $\cos^{-1} \{ \cos (\beta + \frac{\pi}{3}) \}$	

	Architect Rahut was asked to design an office building for a multinational company. the fine storied building has five pillars in the lawn, which are congruent and in the shape of	4
	triangular prisms .Two of the base angles are given to be tan ⁻¹ 2 and tan ⁻¹ 3	
	Triangular Prism	
	Net of Triangular Prism	
	(i)tan ⁻¹ 2+tan ⁻¹ 3	
	$(a)\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ (c) $\frac{3\pi}{4}$ (d) π	
	(ii) the third angle is $(a)^{\frac{\pi}{2}}$ (b) $\frac{\pi}{2}$ (c) $\frac{3\pi}{2}$ (d) π	
	$(a)_4$ $(b)_2$ $(c)_4$ $(b)_1$	
	(a)1 (b)0 (c)-1 (d)none of these	
	(iv)tan ⁻¹ x+tan ⁻¹ y+tan ⁻¹ z= $\frac{\pi}{2}$, then xy+yz+zx=	
	(a)1 (b)0 (c)xyz (d)xy+yz+zx	
4.	In a school project Anu was asked to construct a triangle and name it as ABC. Two angles A and B were given to be equal to $\tan^{-1}\frac{1}{2}$ and $\tan^{-1}\frac{1}{3}$ respectively;	4
	(i)The value of sinA is	
	(i)The value of sinA is (a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{1}{\sqrt{5}}$ (d) $\frac{2}{\sqrt{5}}$	
	(i)The value of sinA is (a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{1}{\sqrt{5}}$ (d) $\frac{2}{\sqrt{5}}$ (ii)Cos(A+B+C)= (a)1 (b)0 (c)-1 (d) $\frac{1}{2}$	
	(i)The value of sinA is (a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{1}{\sqrt{5}}$ (d) $\frac{2}{\sqrt{5}}$ (ii)Cos(A+B+C)= (a)1 (b)0 (c)-1 (d) $\frac{1}{2}$ (iii)if B=cos ⁻¹ x then x=	
	(i)The value of sinA is (a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{1}{\sqrt{5}}$ (d) $\frac{2}{\sqrt{5}}$ (ii)Cos(A+B+C)= (a)1 (b)0 (c)-1 (d) $\frac{1}{2}$ (iii)if B=cos ⁻¹ x then x= (a) $\frac{1}{\sqrt{5}}$ (b) $\frac{3}{\sqrt{10}}$ (c) $\frac{1}{\sqrt{10}}$ (d) $\frac{2}{\sqrt{5}}$	
	(i)The value of sinA is (a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{1}{\sqrt{5}}$ (d) $\frac{2}{\sqrt{5}}$ (ii)Cos(A+B+C)= (a)1 (b)0 (c)-1 (d) $\frac{1}{2}$ (iii)if B=cos ⁻¹ x then x= (a) $\frac{1}{\sqrt{5}}$ (b) $\frac{3}{\sqrt{10}}$ (c) $\frac{1}{\sqrt{10}}$ (d) $\frac{2}{\sqrt{5}}$ (iv)the value of A+B=	
	(i)The value of sinA is (a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{1}{\sqrt{5}}$ (d) $\frac{2}{\sqrt{5}}$ (ii)Cos(A+B+C)= (a)1 (b)0 (c)-1 (d) $\frac{1}{2}$ (iii)if B=cos ⁻¹ x then x= (a) $\frac{1}{\sqrt{5}}$ (b) $\frac{3}{\sqrt{10}}$ (c) $\frac{1}{\sqrt{10}}$ (d) $\frac{2}{\sqrt{5}}$ (iv)the value of A+B= (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$	
5.	(i)The value of sinA is (a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{1}{\sqrt{5}}$ (d) $\frac{2}{\sqrt{5}}$ (ii)Cos(A+B+C)= (a)1 (b)0 (c)-1 (d) $\frac{1}{2}$ (iii)if B=cos ⁻¹ x then x= (a) $\frac{1}{\sqrt{5}}$ (b) $\frac{3}{\sqrt{10}}$ (c) $\frac{1}{\sqrt{10}}$ (d) $\frac{2}{\sqrt{5}}$ (iv)the value of A+B= (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$ Solve for X,	4
5.	(i)The value of sinA is (a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{1}{\sqrt{5}}$ (d) $\frac{2}{\sqrt{5}}$ (ii)Cos(A+B+C)= (a)1 (b)0 (c)-1 (d) $\frac{1}{2}$ (iii)if B=cos ⁻¹ x then x= (a) $\frac{1}{\sqrt{5}}$ (b) $\frac{3}{\sqrt{10}}$ (c) $\frac{1}{\sqrt{10}}$ (d) $\frac{2}{\sqrt{5}}$ (iv)the value of A+B= (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$ Solve for X, tan ⁻¹ (x + 1) + tan ⁻¹ (x - 1) = tan ⁻¹ 8/31	4

6.	Prove that $\sin^{-1}(3/5) - \sin^{-1}(8/17) = \cos^{-1}(84/85)$.	4
7.	Prove that if $\frac{1}{2} \le x \le 1$, then $\cos^{-1} x + \cos^{-1} \left[\frac{x}{2} + \frac{\sqrt{3 - 3x^2}}{2} \right] = \frac{\pi}{3}$	4
8.	Write the given function in simplest form $\tan^{-1}\left(\frac{\cos x - \sin x}{\cos x + \sin x}\right), \frac{-\pi}{4} < x < \frac{3\pi}{4}.$	4
9.	Today in class of Mathematics, Mr. Gupta was explaining the inverse trigonometry functions. He draws the graph of the $\sin^{-1} x$ and explained that for $\sin^{-1} x$, the branch with range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ is called principal value branch. Thus, $\sin^{-1} : \left[-1,1\right] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Based on the above information answer the following questions, (1)Find the domain of $\sin^{-1}\sqrt{x-1}$. [1] (2)Find the domain of $\sin^{-1}[x]$. [1] (3)Find the value of $\sin\left[\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right]$. [2]	4
10.	Two men on either side of a temple of 30 meters high observe its top at the angles of elevation α and β respectively. (as shown in the figure above). The distance between the two men is $40\sqrt{3}$ meters and the distance between the first person A and the temple is $30\sqrt{3}$ meters. Based on the above information answer the following: (i)Find $\angle CAB = \alpha$ in term of cos ⁻¹ (ii) Find $\angle CAB = \alpha$ in term of cos ⁻¹ (iii) Find $\angle BCA = \beta$ in term of tan ⁻¹ Find the domain and range of cos ⁻¹ x	4
11.	Read the following passage and answer the following questions. In a school project Ravi was asked to construct a triangle ABC in which B and C are given by $\tan^{-1}\left(\frac{1}{2}\right)$ and $\tan^{-1}\left(\frac{1}{3}\right)$ respectively. (i) Find the value of sinB (ii) Find the value of cosC (iii) Find the value of B+C OR Find the value of cos (B+C)	4
12.	Ram and Mohan are students of class XII. One day their Mathematics teacher told them about Inverse trigonometric functions. Teacher sketch the graph of $y = \tan^{-1} x$ on the board	4

	as follows.	
	A	
	0.5π	
	-5 -4 -3 -2 -1 1 2 3 4 5	
	-π	
	Based on the above information answer the following questions $T_{1} = 1$	
	1) The domain of tan $(3x + 2)$ is a) P b) P ⁺ (3) ($\pi/2, \pi/2$) (J) (0, π)	
	i) Principal value of $\tan^{-1}(-1)$ is	
	a) $\pi/4$ b) $-\pi/4$ c) -1 d) $3\pi/4$	
	iii)The principal value of $\tan^{-1}(\tan(-6))$ is	
	a) -6 b) 2π -6 c) 6 - 2π d) None	
13.	In a school project manisha was asked toncinstructed a tringle ABC	
	in which two angles B and C are given by $\tan^{-1}\left(\frac{1}{2}\right)$ and $\tan^{-1}\left(\frac{1}{3}\right)$	4
	respective ly.	·
	(i) Find the value of sinB	
	(ii) find the value of cosc	
	(iii) Find the value of $B + C$	
	OR	
	Find the value of $B + C$	
14.	Show that tap $(\frac{1}{2} \sin^{-1} 3) = \frac{4 - \sqrt{7}}{2}$	4
	Show that $\tan\left(\frac{1}{2}\sin\frac{1}{4}\right) - \frac{1}{3}$	
15.	$1 + r^2$	4
	Prove the following cos [tan ⁻¹ {sin (cot ⁻¹ x)}] = $\sqrt{\frac{1+x^2}{2+x^2}}$	

ANSWERS:

Q. NO	ANSWER	MARKS
1.	a)In Δ RPA, tan $lpha$ = RP/AP= 30/ 30 $\sqrt{3}$ = 1/ $\sqrt{3}$ = tan $\pi/6$	4
	So, $\alpha = \angle QAR = \pi/6$	
	$PQ = 40\sqrt{3} - 30\sqrt{3} = 10\sqrt{3}$	
	b)In Δ RPQ, tan eta =RP/PQ= 30/10 $\sqrt{3}$ = $\sqrt{3}$ = tan $\pi/3$	
	So, $\beta = \angle AQR = \pi/3$	
	c) $\sin^{-1}{\sin(\alpha + \frac{2\pi}{3})} = \sin^{-1}{\sin(\pi/6 + \frac{2\pi}{3})} = \sin^{-1}{\sin(5\pi/6)}$	
	}=	
	$\sin^{-1}{\sin(\pi - \pi/6)} = \pi/6 \epsilon [-\pi/2, \pi/2]$	
	d)cos ⁻¹ { cos ($\beta + \frac{\pi}{3}$)} = cos ⁻¹ { cos ($\pi/3 + \frac{\pi}{3}$)} = cos ⁻¹ { cos	
	$(2\pi/3)$	
	$= 2\pi/3 \epsilon [0, \pi]$	
2.	a)In $\triangle ABC$, tan $\angle CAB = BC/AB = 10/20 = \frac{1}{2}$	4
	So, $\angle CAB = \tan^{-1}(1/2)$	
	b) $\angle DAB= 2 \angle CAB= 2 \tan^{-1}(1/2) = \tan^{-1}(\frac{2 \cdot 2}{1 + (1/2)}) = \tan^{-1}(4/3)$	
	$1-(\frac{1}{2})^2$ 3.1 $(1)^2$	
	c) $\angle EAB= 3 \angle CAB= 3 \tan^{-1}(1/2) = \tan^{-1}(\frac{\frac{2}{2}-(\frac{1}{2})}{1-3(\frac{1}{2})^2}) = \tan^{-1}(11/2)$	
	d) In $\Delta A'BC$, tan A' = BC/A'B = 10/25 = 2/5 ²	
	So, A' = $\tan^{-1}(2/5)$	
	Now, $\angle CAB - \angle CA'B = \tan^{-1}(1/2) - \tan^{-1}(2/5) = \tan^{-1}(\frac{\frac{1}{2} - \frac{2}{5}}{1 + \frac{1}{2}}) = \tan^{-1}(\frac{1}{2} - \frac{1}{2})$	
	$1+\frac{1}{2\cdot 5}$	
3.	Solution:	4
	(i)tan ⁻¹ 2+tan ⁻¹ 3=tan ⁻¹ ($\frac{2+3}{1-2+3}$)	
	$= \tan^{-1}(\frac{5}{1-6})$	
	$= \tan^{-1}(\frac{5}{-5})$	
	$=\tan^{-1}(-1)$	
	$=\pi - \frac{\pi}{4}$	
	$=\frac{3\pi}{4}$	
	Since all three angles are in a triangle	
	Sum of angles=180°	
	Sum of angles= π	
	$\frac{3\pi}{3\pi} + x = \pi$	
	$4 \qquad \qquad$	
	$x = \frac{\pi}{4}$	
	/ ^ _4 (iii)given that	
	$\tan^{-1}x + \tan^{-1}y = \frac{\pi}{4}$	

tar	$r^{-1}\left(\frac{x+y}{1-xy}\right) = \frac{\pi}{4}$	
<i>x</i> +	$y_{-tau} \pi$	
1-2	$\frac{-}{4}$	
$\frac{x+1}{1}$	$\frac{y}{z} = 1$	
1-2	(y (-1-x))	
×+)	/-±-xy /+xy/-1	
XT) (iii)	tty-1	
(11)	given that	
tar	1 - x+tan - y+tan - z=n	
tar	Tx+tan Ty=/t-tan Tz	
tar	$1 - x + \tan^2 y = \tan^2 0 - \tan^2 z$	
tar	$r^{-1}(\frac{x-y}{1-xy}) = \tan^{-1}(-z)$	
<i>x</i> ·	+ y	
1 -	$\frac{1}{-xy} = -2$	
⇒x	+y=- z + xyz	
x+y	/+z=xyz	
(iv)	given that	
tar	$1^{-1}x + \tan^{-1}v + \tan^{-1}z = \frac{\pi}{-1}$	
tan	$\frac{1}{2}$	
tai	$y = \frac{1}{2}$ - tail 2	
tar	$1 - x + \tan^2 y = \cot^2 z$	
tar	$r^{1}x+tan^{-1}y=tan^{-1}\frac{z}{z}$	
tar	$r^{-1}\left(\frac{x+y}{1-xy}\right) = \tan^{-1}\frac{1}{x}$	
<i>x</i> +	y = 1	
1-2	$\frac{z}{z}$	
xz+	-yz=1-xy	
хүн	-xz+yz=1	
4. Sol	ution:	4
(i)g	viven A=tan ^{-1$\frac{1}{2}$}	
	$\tan \Delta = \frac{1}{2}$	
	$\frac{2}{2}$	
10		
	$1+\tan^2A=\frac{1}{\cos^2A}$	
	$1+\tan^2 A = \frac{1}{1-\sin^2 A}$	
Put	1-5m2A	
	1,2,1	
1+($\frac{1}{2}^{2} = \frac{1}{1 - \sin 2A}$	
1+	$\frac{1}{1}$	
5	$1 - 5 \ln 2A$	
\rightarrow 4	$\frac{1}{1-\sin 2A}$	
1-s	$\ln^2 A = \frac{1}{5}$	
⇒1	$-\frac{4}{-}=\sin^2A$	
1	5 Terin ² A	
Sin	$^{2}A = \frac{1}{5}$	
Sin	$A = \frac{1}{L}$	
(ii)	$\sqrt{5}$	
(ii) sin	ce ABC is a triangle	
By	angle sum property of triangle	
Δ+		
	$B+C=180^{\circ}$	
Thi	$B+C=180^{\circ}$	
Thi	B+C= 180° Js , s(A+B+C)=cos 180° =-1	
Thu Cos (iii)	B+C=180 ⁰ us , s(A+B+C)=cos180°=-1	
Thi Cos (iii) Giv	B+C=180 ^o us, s(A+B+C)=cos180 ^o =-1 ven B = tan-1($\frac{1}{3}$)	

	$\therefore \cos B = 3/\sqrt{10}$	
	$B = \cos(1(3/\sqrt{10}))$	
	$\Rightarrow x = 3/\sqrt{10}$	
	(iv)	
	(1)	
	Given A=tan ⁻¹ -2	
	B=tan-1 ¹	
	3 Now	
	NOW,	
	$A+B= \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3}$	
	Using $\tan^{-1}x + \tan^{-1}y = \tan^{-1}(\frac{x+y}{x})$	
	$\frac{1-xy}{1-x}$	
	$= \tan^{-1}(\frac{2}{2} + \frac{3}{2})$	
	$1 - \frac{1 \times 1}{2 \times 3}$	
	$\frac{3+2}{2\times 3}$	
	$= \tan^{-1}(\frac{1}{1-\frac{1}{2}})$	
	6 5	
	$= \tan^{-1}(\frac{6}{5})$	
	$\frac{1}{6}$	
	$= \tan^{-}(1)$	
	$=\frac{\pi}{4}$	
5.	$\left[(x+1) + (x-1) \right] > 8$	4
	\Rightarrow $\tan^{-1}\left(\frac{\sqrt{x+1}+\sqrt{x-1}}{1+\sqrt{x-1}}\right) = \tan^{-1}\frac{1}{2}$	
	$\begin{bmatrix} 1 - (x+1)(x-1) \end{bmatrix}$ 31	
	$\therefore \tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{x+y} \right); xy < 1$	
	$(1-xy)^{1-y}$	
	\rightarrow $\tan^{-1}\left(\frac{2x}{1-x}\right) = \tan^{-1}\frac{8}{1-x}$	
	$\frac{1}{1-(x^2-1)} = \frac{1}{31}$	
	$\Rightarrow \frac{2\lambda}{2} = \frac{0}{2}$	
	$2-x^2$ 31	
	$\Rightarrow 62x = 16 - 8x^2$	
	$\Rightarrow 8x^2 + 62x - 16 = 0$	
	$\Rightarrow 4x^2 + 31x - 6 = 0$ $\Rightarrow 4x^2 + 32x - x - 8 = 0$	
	$\Rightarrow 4x^{2} + 32x - x - 0 = 0$ $\Rightarrow 4x(x + 8) - 1(x + 8) = 0$	
	$\Rightarrow (\mathbf{x} + 8) (4\mathbf{x} - 1) = 0$	
	$\therefore x = -8 \text{ or } x = 14$	
	But $x = -8$ gives LHS = tan ⁻¹ (-7) + tan ⁻¹ (-9)	
	$= -\tan^{-1}(7) - \tan^{-1}(9),$	
	which is negative, while RHS is positive.	
	So, $X = -8$ is not possible. Hence $x = 14$ is the only solution of the given equation	
6	$\frac{1}{10000000000000000000000000000000000$	4
0.	Let $\sin^{-1}(3/5) = a$ and $\sin^{-1}(8/17) = b$	4
	Thus, we can write sin a = $3/5$ and sin b = $8/17$	
	Now find the value of cos a and cos b	
	To find cos a:	
	$\cos a = \sqrt{[1 - \sin^2 a]}$	
	$= \sqrt{[1 - (3/5)^2]}$	
	= √[1 - (9/25)]	

	= √[(25-9)/25]	
	= 4/5	
	Thus, the value of $\cos a = 4/5$	
	To find cos b:	
	$Cos b = \sqrt{[1 - sin^2 b]}$	
	$= \sqrt{[1 - (8/17)^2]}$	
	= √[1 - (64/289)]	
	= √[(289-64)/289]	
	= 15/17	
	Thus, the value of $\cos b = 15/17$	
	We know that cos (a- b) = cos a cos b + sin a sin b	
	Now, substitute the values for cos a, cos b, sin a and sin b in the formula, we get:	
	$\cos (a - b) = (4/5)x (15/17) + (3/5)x(8/17)$	
	$\cos (a - b) = (60 + 24)/(17x 5)$	
	cos (a - b) = 84/85	
	(a - b) = cos ⁻¹ (84/85)	
	Substituting the values of a and b sin ⁻¹ (3/5)- sin ⁻¹ (8/7) =	
	cos ⁻¹ (84/85)	
	Hence proved.	
7.	Let $\cos^{-1} x = \theta$ then $x = \cos \theta$ We have	4
	$\cos^{-1}x + \cos^{-1}\left[\frac{x}{2} + \frac{\sqrt{3 - 3x^2}}{2}\right] = \frac{\pi}{3}$	
	LHS= θ +cos ⁻¹ $\left[\frac{\cos\theta}{2} + \frac{\sqrt{3-3\cos^2\theta}}{2}\right]$	
	$=\theta + \cos^{-1}\left[\frac{\cos\theta}{2} + \frac{\sqrt{3}\sqrt{1-\cos^2\theta}}{2}\right]$	
	$=\theta + \cos^{-1}\left[\frac{\cos\theta}{2} + \frac{\sqrt{3}\sin\theta}{2}\right]$	

	$=\theta + \cos^{-1}\left[\cos\theta\cos\frac{\pi}{2} + \sin\frac{\pi}{2}\sin\theta\right]$	
	$=\theta + \cos^{-1}\left[\cos\left(\theta - \frac{\pi}{2}\right)\right]^{3}$	
	$=\theta + \frac{\pi}{2} - \theta = \frac{\pi}{2}$	
8.	$\frac{3}{1} \operatorname{Let} \tan^{-1}\left(\frac{\cos x - \sin x}{\sin x}\right) = y(\operatorname{say})$	4
	Taking common ' $\cos x$ ' from numerator and denominator, we get	
	$Y = \tan^{-1} \left[\frac{1 - \frac{\sin x}{\cos x}}{\frac{\sin x}{\sin x}} \right] = \tan^{-1} \left[\frac{1 - \tan x}{1 - \tan x} \right]$	
	$\begin{bmatrix} 1 + \frac{3mx}{\cos x} \end{bmatrix} \qquad \begin{bmatrix} 1 + \tan x \end{bmatrix}$	
	$=\tan^{-1}\left[\frac{\tan_4}{1+\tan\frac{\pi}{4}tanx}\right] \qquad \qquad \left[\tan\frac{\pi}{4}=1\right]$	
	$=\tan^{-1}\left[\tan\left(\frac{\pi}{4}-x\right)\right] \qquad \qquad \left[\frac{\tan A - \tan B}{1 + \tan A \tan B} = \tan(A - B)\right]$	
	$=\frac{\pi}{4} - x, 0 < x < \pi$	
0		
9.	(1)Since, $0 \le x - 1 \le 1$ $1 \le x \le 2$, Domain = [1,2]	4
	(2)Since, domain of $\sin^{-1} x = [-1,1]$	
	So, $[x] = \begin{cases} -1, -1 \le x < 0 \\ 0, 0 \le x \le 1 \end{cases}$	
	$\begin{pmatrix} 1, & 1 \le x < 2 \\ 1, & -1 \le x < 2 \end{pmatrix}$	
	So Domain of $\sin^{-1}[x] = [-1, 2)$	
	$ \begin{array}{c} (5) \sin\left[\frac{\pi}{3} - \sin\left(-\frac{\pi}{2}\right)\right] \\ \cdot \left[\pi, \pi\right] \cdot (\pi) $	
	$= \sin\left[\frac{1}{3} + \frac{1}{6}\right] = \sin\left(\frac{1}{2}\right) = 1$	
10.	(i) $\alpha = \sin^{-1}\left(\frac{1}{2}\right)$	4
10.	(i) $\alpha = \sin^{-1}\left(\frac{1}{2}\right)$ (ii) $\alpha = \cos^{-1}\left(\sqrt{3}\right)$	4
10.	(i) $\alpha = \sin^{-1}\left(\frac{1}{2}\right)$ (ii) $\alpha = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (iii) $\alpha = -1$	4
10.	(i) $\alpha = \sin^{-1}\left(\frac{1}{2}\right)$ (ii) $\alpha = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (iii) $\beta = \tan^{-1}(\sqrt{3})$	4
10.	(i) $\alpha = \sin^{-1}\left(\frac{1}{2}\right)$ (ii) $\alpha = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (iii) $\beta = \tan^{-1}(\sqrt{3})$ Range = $[0, \pi]$ OR	4
10.	(i) $\alpha = \sin^{-1}\left(\frac{1}{2}\right)$ (ii) $\alpha = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (iii) $\beta = \tan^{-1}(\sqrt{3})$ Range = $[0, \pi]$ OR	4
10.	(i) $\alpha = \sin^{-1}\left(\frac{1}{2}\right)$ (ii) $\alpha = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (iii) $\beta = \tan^{-1}(\sqrt{3})$ Range = $[0, \pi]$ (i) $\frac{1}{2}$	4
10.	(i) $\alpha = \sin^{-1}\left(\frac{1}{2}\right)$ (ii) $\alpha = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (iii) $\beta = \tan^{-1}(\sqrt{3})$ Range = $[0, \pi]$ (i) $\frac{1}{\sqrt{5}}$ (ii) $-\frac{3}{3}$	4
10.	(i) $\alpha = \sin^{-1}\left(\frac{1}{2}\right)$ (ii) $\alpha = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (iii) $\beta = \tan^{-1}(\sqrt{3})$ Range = $[0, \pi]$ (i) $\frac{1}{\sqrt{5}}$ (ii) $\frac{3}{\sqrt{10}}$ (iii) π	4
10.	(i) $\alpha = \sin^{-1}\left(\frac{1}{2}\right)$ (ii) $\alpha = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (iii) $\beta = \tan^{-1}(\sqrt{3})$ Range = $[0, \pi]$ (i) $\frac{1}{\sqrt{5}}$ (ii) $\frac{3}{\sqrt{10}}$ (iii) $\frac{\pi}{4}$ OR	4
10.	(i) $\alpha = \sin^{-1}\left(\frac{1}{2}\right)$ (ii) $\alpha = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (iii) $\beta = \tan^{-1}(\sqrt{3})$ Range = $[0, \pi]$ (i) $\frac{1}{\sqrt{5}}$ (ii) $\frac{3}{\sqrt{10}}$ (iii) $\frac{\pi}{4}$ OR 1	4
10.	(i) $\alpha = \sin^{-1}\left(\frac{1}{2}\right)$ (ii) $\alpha = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (iii) $\beta = \tan^{-1}(\sqrt{3})$ Range = $[0, \pi]$ (i) $\frac{1}{\sqrt{5}}$ (ii) $\frac{3}{\sqrt{10}}$ (iii) $\frac{\pi}{4}$ OR $\frac{1}{\sqrt{2}}$	4
10.	(i) $\alpha = \sin^{-1}\left(\frac{1}{2}\right)$ (ii) $\alpha = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (iii) $\beta = \tan^{-1}(\sqrt{3})$ Range = $[0, \pi]$ (i) $\frac{1}{\sqrt{5}}$ (ii) $\frac{3}{\sqrt{10}}$ (iii) $\frac{\pi}{4}$ OR $\frac{1}{\sqrt{2}}$ (i) (a) x is real, implies $3x + 2$ is real. So domain is R	4
10. 11. 11.	(i) $\alpha = \sin^{-1}\left(\frac{1}{2}\right)$ (ii) $\alpha = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (iii) $\beta = \tan^{-1}(\sqrt{3})$ Range = $[0, \pi]$ (i) $\frac{1}{\sqrt{5}}$ (ii) $\frac{3}{\sqrt{10}}$ (iii) $\frac{\pi}{4}$ OR $\frac{1}{\sqrt{2}}$ (i) (a) x is real, implies $3x + 2$ is real. So domain is R (ii)(b) $\tan(-\pi/4) = -1$ implies $\tan^{-1}(-1) = -\pi/4$	4
10. 11. 11.	(i) $\alpha = \sin^{-1}\left(\frac{1}{2}\right)$ (ii) $\alpha = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (iii) $\beta = \tan^{-1}(\sqrt{3})$ Range = $[0, \pi]$ (i) $\frac{1}{\sqrt{5}}$ (ii) $\frac{3}{\sqrt{10}}$ (iii) $\frac{\pi}{4}$ OR $\frac{1}{\sqrt{2}}$ (i) (a) x is real, implies $3x + 2$ is real. So domain is R (ii)(b) $\tan(-\pi/4) = -1$ implies $\tan^{-1}(-1) = -\pi/4$ (iii) (b) $\tan^{-1}(\tan(-6)) = \tan^{-1}(-\tan6) = \tan^{-1}(\tan(2\pi - 6)) = 2\pi - 6$	4
10. 11. 11.	(i) $\alpha = \sin^{-1}\left(\frac{1}{2}\right)$ (ii) $\alpha = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (iii) $\beta = \tan^{-1}(\sqrt{3})$ Range = $[0, \pi]$ (i) $\frac{1}{\sqrt{5}}$ (ii) $\frac{3}{\sqrt{10}}$ (iii) $\frac{\pi}{4}$ OR $\frac{1}{\sqrt{2}}$ (i) (a) x is real, implies $3x + 2$ is real. So domain is R (ii)(b) $\tan(-\pi/4) = -1$ implies $\tan^{-1}(-1) = -\pi/4$ (iii) (b) $\tan^{-1}(\tan(-6)) = \tan^{-1}(-\tan 6) = \tan^{-1}(\tan(2\pi - 6)) = 2\pi - 6$	4

13.	We have, $\tan^{-1}\left(\frac{1}{2}\right) = B \Longrightarrow \tan B = 1/2$ and $\tan^{-1}\left(\frac{1}{3}\right) = C \implies \tan C = 1/3$	
	(i) $\sin B = \frac{1}{\sqrt{5}}$ and (ii) $\cos C = \frac{3}{\sqrt{10}}$	
	(<i>iii</i>) $\tan(B+C) = \frac{\tan B + \tan C}{1 - \tan B \tan C} = \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \times \frac{1}{3}} = 1 = \tan \frac{\pi}{4} \Longrightarrow B + C = \frac{\pi}{4}$	
	OR	
	$\cos B = \frac{2}{\sqrt{5}} \text{ and } \sin C = \frac{3}{\sqrt{10}}$	
	$\cos(B+C) = \cos B \cos C - \sin B \sin C = \frac{2}{\sqrt{5}} \times \frac{3}{\sqrt{10}} - \frac{1}{\sqrt{5}} \times \frac{3}{\sqrt{10}} = \frac{1}{\sqrt{2}}$	
14.	Let $\sin^{-1}\frac{3}{4} = x$, $\sin x = 3/4$,	4
	$\frac{2\tan\frac{x}{2}}{2} = \frac{3}{2}$	
	$1 + \tan^2 \frac{x}{2}$ 4	
	$\tan\frac{x}{2} = \frac{4\pm\sqrt{7}}{3}$	
	$\tan(\frac{1}{2}\sin^{-1}\frac{3}{4}) = \frac{4-\sqrt{7}}{3}$	
15.	Let cot ⁻¹ x =v	Δ
	$\cos[\tan^{-1}{\sin(\cot^{-1}x)}] = \cos[\tan^{-1}{\sin y}] = \cos[\tan^{-1}{\frac{1}{\cos ec y}}]$	
	$= \cos[\tan^{-1}\{\frac{1}{\sqrt{1}+\cot^{2}y}\}] = \cos[\tan^{-1}\{\frac{1}{\sqrt{1}+x^{2}}\}]$	
	let $\tan^{-1}\frac{1}{\sqrt{1+x^2}} = a$ such that $\tan a = \frac{1}{\sqrt{1+x^2}}$	
	$\tan^2 a = \frac{1}{1+x^2}$	
	$\frac{\sin^2 a}{\cos^2 a} + 1 = \frac{1}{1+x^2} + 1$	
	$\frac{1}{2} = \frac{2+x^2}{1+x^2}$	
	$\cos^2 a \frac{1+x^2}{1+x^2}$	
	$\cos a = \sqrt{\frac{1+x}{2+x^2}}$	

	Two men on either side of a temple of 30 meters high observe its top at the angles of elevation α and β respectively. (as shown in the figure above). The distance between the two men is 40V3 metres and the distance between the first person A and the temple is 30V3 meters. $\angle CAB = \alpha =$ A.sin ⁻¹ (2/V3) B.sin ⁻¹ (1/2) C.sin ⁻¹ (V3/2)	
7.	The municipal corporation of a city is planning to fix hoarding boards at the face of a building on the road of a busy market for awareness on keeping the city clean. Anuj, Bala and Dilip are the three engineers who are working on this project. Hoardings are placed at C,D and E on the wall. C is the height of 10 meters from the ground level D and E are above it. $\begin{bmatrix} E \\ D \\ C \\ 10 \\ m \end{bmatrix}$ A is a point which is 20 meters away from the foot of the building. From A, the angle of elevation of D is doubled the angle of elevation of C. Also, from A the angle of elevation of E is triple the angle of elevation of C. Look at the figure and based on the above information answer the following: (i) If the measure of angle CAB =tan ⁻¹ x, Find the value of x. (ii) Point P is 5 meters behind A. Then find the difference between angle CAB and CPB. (iv) Give the domain and range of tan ⁻¹ x	5
8.	I wo men on either side of a tower of 30 meters high observe its top at the angles of elevation α and β respectively. The distance between the two men is $40\sqrt{3}$ and the distance	5

	between the first person A and the tower is $30\sqrt{3}$ meters.				
	B				
	B				
	x		d		
	1		James J		
	Based on the above (i) If anal	e information answe e CAB = $\alpha = \sin^{-1}$	The following: x, find the value of x.		
	(<i>ii</i>) If angle (<i>iii</i>) Find the	$\alpha \text{CAB} = \alpha = \cos^{-1} y,$ e measure of angle A	find the value of y.		
) Give the doma	in and range of cos ⁻	⁻¹ y		
9.	Shriya is preparing maths and importa	for her board exam nt facts related to ea	s. So, she decided to prepare ch ch chapter. For the chapter inve	art of formulas of rse trigonometry she	
	has prepared the for trigonometric func	bllowing table to rem tions.	nember the principal branch value	ues of inverse	
	Functions	Domain	Range (Principal Value Branches)		
	$y = \sin^{-1} x$	[-1, 1]	$\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$		
	$y = \cos^{-1} x$	[-1, 1]	[0, π]		
	y = cosec ⁻¹ x y = sec ⁻¹ x x R - (-1, 1) [0, π] - { $\frac{\pi}{2}$ } [0, π] - { $\frac{\pi}{2}$ }				
	$y = \tan^{-1} x$	R	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$		
	$y = \cot^{-1} x$	R	(0, π)		
	Based on the above information, answer the following questions,(1) Find the principal value of $\csc^{-1}(-1)$.[1](2) Find the principal value of $\sec^{-1}(-2)$.[1](3) Solve the following equation,[3]				
		$\tan^{-1}\left(\frac{x+1}{x-1}\right)$	$+\tan^{-1}\left(\frac{x-1}{x}\right) = \tan^{-1}(-7)$		
10.	If $\overline{\cos^{-1}\frac{x}{a} + \cos^{-1}}$	$\frac{y}{b} = \alpha$, prove that $\frac{x^2}{a^2}$	$\frac{2}{a} - \frac{2xy}{ab}\cos\alpha + \frac{y^2}{b^2} = \sin^2\alpha.$		5
11.	Prove that, $\tan\left(\frac{\pi}{4}\right)$	$+\frac{1}{2}\cos^{-1}\frac{a}{b}$ + tan	$\left(\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\frac{a}{b}\right) = \frac{2b}{a}$		5
12.	Prove that : $\tan^{-1}\left(\frac{\cos x}{1+\sin x}\right) = \frac{\pi}{4} - \frac{x}{2}, x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$				

		5
13.	Prove that : $\tan^{-1}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}\right) = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x, \ -\frac{1}{\sqrt{2}} \le x \le 1$	
		5
14.	Read the following passage and answer the following questions:	5
	In a school project Manish was asked to construct a triangle ABC in which two	
	angles B and C are given by $\tan^{-1}(\frac{1}{2})$ and $\tan^{-1}(\frac{1}{3})$ respectively.	
	(i) Find the value of sin B.	
	(ii) Find the value of cos C.	
	(iii) Find the value of B + C	
	(iv) Find the value of cos (B+C)	
	(v) Write the formula for tan ⁻¹ A + tan ⁻¹ B	
15.	Read the following passage and answer the following questions:	5
	Two men on either side of a temple 15 metre high observe its top at the	
	angles of elevation $\propto and~eta$ respectively (as shown in the figure). The	
	distance between the two men is 20 $\sqrt{3}$ m and the distance between the first	
	person A and the temple is 15 $\sqrt{3}$.	
	(i) Find \propto in terms of sin ⁻¹ ,	
	(ii) Find \propto in terms of cos ⁻¹	
	(iii) Find β in terms of tan ⁻¹	
	(iv) Write the domain and range of cos ⁻¹	
	(v) Find $m \angle ABC$	
16	$1 - \sqrt{1 + x} - \sqrt{1 - x} - \pi - 1$	5
10.	Prove that $\tan^{-1}\left[\frac{\sqrt{1+x}}{\sqrt{1+x}+\sqrt{1-x}}\right] = \frac{\pi}{4} - \frac{\pi}{2}\cos^{-1}x, 0 < x < 1$	5
17.	Find the greatest and least values of $(\sin^{-1}x)^2 + (\cos^{-1}x)^2$.	5

ANSWERS:

Q. NO	ANSWER	MARKS
1.	i) Domain of tan ⁻¹ x is R or (- ∞ , ∞).	5
	ii) The principal value branch of cosec ⁻¹ x is [- $\pi/2$,0) \cup (0, $\pi/2$]	
	or $[-\pi/2, \pi/2] - \{0\}$	
	iii) Another two branches of sin ⁻¹ x other than principal value	
	branch are [$\pi/2$,3 $\pi/2$], [3 $\pi/2$,5 $\pi/2$]	
	iv) If x < 0, then $\tan^{-1}x + \tan^{-1}\frac{1}{x} = \tan^{-1}x + \cot^{-1}x - \pi = \frac{\pi}{2} - \pi = -1$	
	$\pi/2$	
	v) To find the domain of $\sin^{-1}(2x - 3)$, we can write	
	$-1 \le 2x - 3 \le 1 \Rightarrow -1 + 3 \le 2x \le 1 + 3 \Rightarrow 2 \le 2x \le 4$	
	$\Rightarrow 1 \le x \le 2$	
	So, $x \in [1,2]$	
2.	i) As we know $3\pi < 10 < 7\pi/2$	5
	Now, x = $\sin^{-1}(\sin 10) = \sin^{-1}(\sin \pi - 10) = \sin^{-1}(\sin 3\pi - 10)$	
	But $0 > 3 \pi - 10 > - \pi/2$	
	i.e. $x = 3\pi - 10$	
	ii) $\frac{1-\cos x}{1+\cos x} = \tan^2(x/2), x/2 \in (-\pi/2, \pi/2)$	
	$y = \tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right) = \tan^{-1}\left(\tan \frac{x}{2} \right)$	
	$x > 0 \Rightarrow y = x/2$ and $x < 0 \Rightarrow y = -x/2$	
	iii)Let $\tan^{-1} x = \theta \implies x = \tan \theta$	
	$\theta \in (-\pi/2, \pi/2)$	
	Sin θ = cos θ . tan θ = x / sec θ = x / $\sqrt{1 + x^2}$	
	iv) Let $\operatorname{cosec}^{-1} x = \theta \Rightarrow x = \operatorname{cosec} \theta \Rightarrow \sin \theta = 1/x$	
	$\theta \in [-\pi/2, \pi/2] - \{0\}$	
	$\cos \theta = \sqrt{1 - \frac{1}{x^2 - 1}} - \frac{\sqrt{x^2 - 1}}{x^2 - 1}$	
	$\cos v = \sqrt{1 - \frac{1}{x^2} - \frac{1}{ x }}$	
	v) No, $\sin^{-1} x \neq (\sin x)^{-1}$	
3.	solution:	5
	$\tan A = \frac{BC}{C}$	
	$tan \Lambda - \frac{10}{10}$	
	t_{20}	
	$\frac{1}{2}$	
	$$	
	$\langle CAB = LdH = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$	
	<dab=2×<cab< th=""><th></th></dab=2×<cab<>	
	$=2\times \tan^{-1}(\frac{1}{2})$	
	Using 2tan ⁻¹ x=tan ⁻¹ $\frac{2x}{1-x^2}$	

$$\begin{array}{c|c} = \tan^{-1} \left\{ \frac{2\pi^{2}}{1+\frac{1}{2}} \right\} \\ = \tan^{-1} \left\{ \frac{1}{2} \right\} \\ = \tan^{-1} \left\{ \frac{3}{2} \right\} \\ (ii) given that \\ < CAB = 2x < CAB \\ tan^{-\frac{1}{2}} \\ = \tan^{-\frac{1}{2}} \frac{2}{3} \\ (iii) given that \\ < CAB = 2x < CAB \\ tan^{-\frac{1}{2}} \\ = \tan^{-\frac{1}{2}} \left\{ \frac{3\pi^{-\frac{1}{2}}}{1+\frac{1}{2}} \right\} \\ = \tan^{-\frac{1}{2}} \left\{ \frac{3\pi^{-\frac{1}{2}}}{1+\frac{1}{2}} \right\} \\ = \tan^{-1} \left\{ \frac{3\pi^{-\frac{1}{2}}}{1+\frac{1}{2}} \right\} \\ (iv) in triangle A^{12} C tan^{A} = BC/A^{12} \\ Tan A^{2} = 1/2 > 2/5 \\ Angle C'AB = \tan^{-1} (2/5) \\ = \tan^{-1} \left\{ \frac{1}{1+(2/2)} - 2/5 \right\} \\ = \tan^{-1} \left\{ \frac{1}{1+(2/2)} - 2/$$

	Hence $\cos \alpha = \sqrt{3/2}$	
	$\alpha = \cos^{-1}(\sqrt{3/2})$	
	iii) In triangle ABD	
	$\tan\beta = \frac{BD}{AD}$	
	$\tan\beta = \frac{30}{10\sqrt{3}}$	
	$\tan\beta = \frac{3}{c}$	
	$\tan\beta = \sqrt{3}$	
	$\beta = \tan^{-1}(\sqrt{3})$	
	Also, $\beta = 60^\circ = \frac{\pi}{2}$	
	Iv) since $\alpha = 30^{\circ}$ and $\beta = 60^{\circ}$	
	In triangle ABC,	
	By angle sum property	
	$\alpha + \beta + 1$ riangle ABC = 180° 20° + 60° + traingle ABC = 180°	
	30 + 00 + traingle ABC = 180 Triangle ABC = 90°	
	Triangle ABC = $\frac{\pi}{2}$	
	v) Since $\cos x$ is defined at x=0, and π	
	Domen of $\cos^{-1} x$ includes -1 and 1	
	Range of $\cos^{-1} x$ also includes 0 and π	
5.	Answer:	5
	(i) b	
	(111) d (iv) a	
	(IV) a	
6.	Ans= (b)	5
7.	(i) $\frac{1}{2}$ (ii) $\frac{11}{24}$ (iii) $\frac{1}{2}$ (iv) $\left(\frac{-\pi}{2}, 2\right)$	5
8.	(i) $\frac{1}{2}$	5
	$\frac{2}{\sqrt{3}}$	
	(11) $\frac{2}{\pi}$	
	(iii) $\frac{\pi}{2}$	
	(iv) $[-1,1],[0,\pi]$	_
9.	(1)Let, $\csc^{-1}(-1) = y$	5
	Inen, $-1 = \csc y$	
	Since principal value branch of $\csc^{-1} x$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$	
	And $\csc\left(-\frac{\pi}{2}\right) = -1$ and $-\frac{\pi}{2}\epsilon\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	
	So, principal value of $\csc^{-1}(-1) = -\frac{\pi}{2}$	
	(2)Let $\sec^{-1}(-2) = y$	
	Since principal value branch of sec ⁻¹ $x = [0, \pi] - \left\{\frac{\pi}{2}\right\}$	
	And $\sec \frac{2\pi}{3} = -2$ and $\frac{2\pi}{3} \in [0, \pi]$	
	So, principal value of sec ⁻¹ (-2) = $\frac{2\pi}{3}$	
	(3) $\tan^{-1}\left(\frac{x+1}{x-1}\right) + \tan^{-1}\left(\frac{x-1}{x}\right) = \tan^{-1}(-7)$	
		•

$$\begin{array}{rcl} 13. \quad \text{LHS} = & \\ \tan^{4} \left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right) = \tan^{4} \left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \times \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} - \sqrt{1-x}} \right) \\ = & \tan^{4} \left(\frac{2 - 2\sqrt{1-x^{2}}}{(1+x) + x} \right) = \tan^{4} \left(\frac{1 - \sqrt{1-x^{2}}}{x} \right) \\ \text{Puting } x = \sin y \Rightarrow y = \sin^{-1} x \\ = & \tan^{4} \left(\frac{1 - \cos y}{\sin y} \right) = \tan^{-2} \left(\frac{2\sin^{2} y}{2 - \sin^{2} 2} \right) = \tan^{-2} \left(\tan \frac{y}{2} \right) = \frac{y}{2} = \frac{1}{2} \sin^{-1} x \\ = & \frac{1}{2} \left(\frac{\pi}{2} - \cos^{-1} x \right) = \frac{\pi}{4} - \frac{1}{2} \cos^{-1} x = RHS \\ \end{array}$$

$$\begin{array}{r} 14. \quad (i) \quad \text{the value of Sin B} = \frac{1}{\sqrt{5}} \\ (ii) \quad \text{the value of Cos C} = & \frac{3}{\sqrt{10}} \\ (iii) \quad \text{the value of Cos C} = & \frac{\pi}{4} \\ (iv) \quad \text{the value of Cos C} = & \frac{1}{\sqrt{2}} \\ (iv) \quad \text{the value of Cos C} = & \frac{1}{\sqrt{2}} \\ (i) \quad \text{the value of Cos C} = & \frac{1}{\sqrt{2}} \\ (ii) \quad \text{the value of Cos C} = & \frac{1}{\sqrt{2}} \\ (ii) \quad \text{the value of Cos C} = & \frac{1}{\sqrt{2}} \\ (ii) \quad \text{the value of Cos C} = & \frac{1}{\sqrt{2}} \\ (ii) \quad 0 = & \sin^{-1} \frac{1}{2} \\ (ii) \quad 0 = & \cos^{-1} \frac{\sqrt{3}}{2} \\ (iii) \quad \beta = & \tan^{-1} \sqrt{3} \\ (iv) \quad domain and range of \cos^{-1} x = [-1,1] \text{ and } [0,\pi] \\ (v) \quad m \angle ABC = \frac{\pi}{2} \\ \end{array}$$

$$\begin{array}{r} 5. \\ 15. \quad 10. \quad 0 = & \cos^{-1} \frac{\sqrt{3}}{2} \\ (ii) \quad M = & 2\cos^{-1} \frac{\sqrt{3}}{2} \\ (iii) \quad \beta = & \tan^{-1} \sqrt{3} \\ (iv) \quad domain and range of & \cos^{-1} x = [-1,1] \text{ and } [0,\pi] \\ (v) \quad m \angle ABC = \frac{\pi}{2} \\ 10. \quad 10. \quad 10. \quad 10. \\ 10. \quad 10. \quad$$

	$\frac{\pi}{4} - \frac{1}{2}\cos^{-1}x$	
17.	$(\sin^{-1}x)^2 + (\cos^{-1}x)^2$ $(\sin^{-1}x + \cos^{-1}x)^2 - 2\sin^{-1}x\cos^{-1}x$	5
	$\frac{\pi^2}{4} - 2\sin^{-1}x \left(\frac{\pi}{2} - \sin^{-1}x\right)$	
	$\frac{\pi^2}{4} -\pi \sin^{-1}x + 2(\sin^{-1}x)^2$	
	$2[(\sin^{-1}x - \frac{\pi}{4})^2 + \frac{\pi^2}{16}]$	
	Now, π , π , π , π	
	$-\frac{1}{2} \leq \sin^{-1}x \leq \frac{1}{2}$	
	$-\frac{1}{4} \leq \sin^{-1}x - \frac{1}{4} \leq \frac{1}{4}$	
	$0 \le (\sin^{-1}x - \frac{\pi}{4})^2 \le \frac{5\pi}{16}$	
	$\frac{\pi^2}{16} \le (\sin^{-1}x - \frac{\pi}{4})^2 + \frac{\pi^2}{16} \le \frac{5\pi^2}{8}$	
	$\frac{\pi^2}{8} \le 2(\sin^{-1}x - \frac{\pi}{4})^2 + \frac{\pi^2}{16} \le \frac{5\pi^2}{4}$	
	Greatest value = $\frac{5\pi^2}{4}$	
	Least value = $\frac{\pi^2}{8}$	

As Per Revised CBSE Curriculum 2023-24

Classroom Teaching & Animated Videos Playlists

We take immense pleasure in serving you. Now, revel in our seamless online services completely free of charge. view our animated and classroom teaching Playlists customized for students from grade 1 to 12,Covering a wide range of subjects to enhance your comprehension and knowledge. Simply click on the provided playlist links to access **Playlists based on the latest NCERT Syllabus for 2023-24.**

content includes **Competency-Based** Our Questions, Assertion-Reason Questions, Previous Year Questions (PYQ), and Study-Based Questions to enhance your Case learning experience. For the most up-to-date videos, consider subscribing to our YouTube channel at https://www.youtube.com/@PrincipalsHandbookandDiaryadditionall y, you're encouraged to join our expanding WhatsApp community group to stay updated with the latest curriculum-related content and updates.

Nageen Group of Schools

We are committed to enriching your educational journey!!!

ANIMATED & CLASSROM TEACHING VIDEOS PLAYLISTS

(As per revised CBSE Curriculum- 2023-24)

ANIMATED VIDEOSPLAYLISTS (CLASS 1)			
Class 1 EVS(EnglishLanguage)(CBSE)	Click here for playlist		
Class 1 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist		
Class 1 EVS (HindiLanguage)(CBSE)	Click here for Playlist		
Class 1 Mathematics(Hindi Language)(CBSE)	Click here for Playlist		
ANIMATED VIDEOS PLAYLISTS (CLASS	5 2)		
Class 2 EVS (EnglishLanguage)(CBSE)	<u>Click here for Playlist</u>		
Class 2 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist		
Class 2 EVS(HindiLanguage)(CBSE)	<u>Click here for Playlist</u>		
Class 2 Mathematics (Hindi Language)(CBSE)	Click here for Playlist		
ANIMATED VIDEOS PLAYLISTS (CLASS	5 3)		
Class 3 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist		
Class 3 EVS (EnglishLanguage)(CBSE)	Click here for Playlist		
Class 3 EVS (HindiLanguage)(CBSE)	<u>Click here for Playlist</u>		
Class 3 Mathematics (HindiLanguage)(CBSE)	Click here for Playlist		
ANIMATED VIDEOS PLAYLISTS (CLASS	5 4)		
Class 4 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist		
Class 4 EVS(EnglishLanguage)(CBSE)	Click here for Playlist		
Class 4 Mathematics (HindiLanguage)(CBSE)	Click here for Playlist		
Class 4 EVS (HindiLanguage)(CBSE)	Click here for Playlist		
CLASSROOM TEACHING VIDEOS PLAYLISTS	(CLASS 4)		
Class 4 General Science (CBSE)	Click here for Playlist		
ANIMATED VIDEOS PLAYLISTS (CLASS	5 5)		
Class 5 Mathematics (EnglishLanguage)(CBSE)	<u>Click here for Playlist</u>		
Class 5 Science (EnglishLanguage)(CBSE)	Click here for Playlist		
Class 5 Mathematics(HindiLanguage)(CBSE)	Click here for Playlist		
Class 5 Science (HindiLanguage)(CBSE)	<u>Click here for Playlist</u>		
CLASSROOM TEACHING VIDEOS PLAYLISTS	(CLASS 5)		
Class 5 General Science (CBSE)	Click here for Playlist		
Class 5 EVS (CBSE)	Click here for Playlist		

ANIMATED VIDEOS PLAYLIS	STS(CLASS 6)
Class 6 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist
Class 6 Social Science (EnglishLanguage)(CBSE)	Click here for Playlist
Class 6 Science (EnglishLanguage) (CBSE)	Click here for Playlist
Class 6 Mathematics (Hindi Language)(CBSE)	Click here for Playlist
Class 6 Science All Chapters (CBSE)	Click here for Playlist
CLASSROOM TEACHING VIDEOS P	LAYLISTS (CLASS 6)
Class 6 Mathematics (CBSE)	Click here for Playlist
Class 6 Social Science (CBSE)	Click here for Playlist
Class 6 Sanskrit (CBSE)	Click here for Playlist
Class 6 Hindi (CBSE)	Click here for Playlist
Class 6 Science (CBSE)	Click here for Playlist
ANIMATED VIDEOS PLAYLIS	IS (CLASS /)
Class 7 Science(CBSE)	Click here for Playlist
Class 7 Mathematics(CBSE)	Click here for Playlist
Class 7 Social Science(CBSE)	Click here for Playlist
Class 7 Mathematics(CBSE)	<u>Click here for Playlist</u>
Class 7 Science (CBSE)	<u>Click here for Playlist</u>
CLASSROOM TEACHING VIDEOS P	LAYLISTS (CLASS 7)
	Click here for Playlist
Class 7 Hindi (CBSE)	Click here for Playlist
Class / Sanskrit (CBSE)	Click here for Playlist
	Click here for Playlist
Class 7 Mathematics (CBSE)	Click here for Playlist
ANIMATED VIDEOS PLAYLIS	TS (CLASS 8)
Class 8 Science(CBSE)	Click here for Playlist
Class 8 Mathematics(CBSE)	Click here for Playlist
Class 8 Social Science(CBSE)	Click here for Playlist
Class 8 Mathematics(CBSE)	Click here for Playlist
Class 8 Science(CBSE)	Click here for Playlist
CLASSKOUIVI TEACHING VIDEOS P	LATLISTS (CLASS 8)
Class 8 Hindi (CBSE)	Click here for Playlist
Class 8 Sanskrit (CBSE)	Click here for Playlist
ΑΝΙΜΑΤΕΟ VIDEOS ΡΙ ΔΥΙ ΙS	TS (CLASS 9)
Class 9 Biology(CBSE)	Click here for Playlist
Class 9 Dividgy(CDSE)	Click here for Playlist
Class 9 Filysics(CDSE)	Click here for Disulist
	Click here for Playlist
Class 3 Social Science (CDSE)	Click here for Playlist

Class 9 Mathematics (CBSE)	Click here for Playlist
Class 9 Science (CBSE)	Click here for Playlist

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 9)		
Class 9 Social Science (CBSE)	<u>Click here for Playlist</u>	
Class 9 Mathematics(CBSE)	<u>Click here for Playlist</u>	
Class 9 English (CBSE)	Click here for Playlist	
Class 9 Hindi (CBSE)	<u>Click here for Playlist</u>	

ANIMATED	VIDEOS	PLAYLISTS	(CLASS 2	10)
				1

Class 10 Biology (CBSE)	<u>Click here for Playlist</u>
Class 10 Physics (CBSE)	Click here for Playlist
Class 10 Chemistry (CBSE)	Click here for Playlist
Class 10 Social Science (CBSE)	Click here for Playlist
Class 10 Mathematics(CBSE) (English Language)	Click here for Playlist
Class 10 Mathematics(CBSE) (Hindi Language)	Click here for Playlist
Class 10 Science(CBSE) (Hindi Language)	Click here for Playlist

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 10)		
Class 10 English (CBSE)	Click here for Playlist	
Class 10 Hindi (CBSE)	Click here for Playlist	
Class 10 Mathematics (CBSE)	Click here for Playlist	
Class 10 Social Science (CBSE)	Click here for Playlist	
Class 10 Magical Science Board Exam Preparation in 1 min (CBSE)	Click here for Playlist	
Class 10: Science (CBSE)	Click here for Playlist	

ANIMATED VIDEOS PLAYLISTS (CLASS 11)		
Class 11 Physics (CBSE) (English Language)	Click here for Playlist	
Class 11 Chemistry (CBSE) (English Language)	Click here for Playlist	
Class 11 Biology (CBSE) (English Language)	Click here for Playlist	
Class 11 Mathematics(CBSE) (English Language)	Click here for Playlist	
Class 11 Accountancy (CBSE) (English Language)	Click here for Playlist	
Class 11 Business Studies (CBSE) (English Language)	Click here for Playlist	
Class 11 Statistics (CBSE) (English Language)	Click here for Playlist	
Class 11 Biology (CBSE) (Hindi Language)	Click here for Playlist	
Class 11 Mathematics (CBSE) (Hindi Language)	Click here for Playlist	
Class 11 Physics (CBSE) (Hindi Language)	Click here for Playlist	
Class 11 Chemistry (CBSE) (Hindi Language)	Click here for Playlist	
Class 11Micro Economy (CBSE) (English Language)	Click here for Playlist	

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 11)		
Class 11Mathematics (CBSE)	Click here for Playlist	
Class 11 Accounts (CBSE)	Click here for Playlist	
Class 11 Business Studies (CBSE)	Click here for Playlist	

Class 11 Hindi (CBSE)	<u>Click here for Playlist</u>
Class 11 Psychology (CBSE)	Click here for Playlist
Class 11 Economics (CBSE)	Click here for Playlist
Class 11 Physics (CBSE)	Click here for Playlist
Class 11 Chemistry (CBSE)	Click here for Playlist
Class 11 English (CBSE)	Click here for Playlist
Class 11 Biology (CBSE)	Click here for Playlist
Class 11 Biology Shorts (CBSE)	Click here for Playlist

ANIMATED VIDEOS PLAYLISTS (CLASS 12)

Class 12 Physics (CBSE)	Click here for Playlist
Class 12 Chemistry (CBSE)	<u>Click here for Playlist</u>
Class 12 Biology(CBSE)	<u>Click here for Playlist</u>
Class 12 Macro Economy (CBSE)	<u>Click here for Playlist</u>
Class 12Economic (CBSE)	<u>Click here for Playlist</u>
Class 12 Mathematics (CBSE)	<u>Click here for Playlist</u>
Class 12 Accountancy (CBSE)	<u>Click here for Playlist</u>
Class 12 Business Studies (CBSE)	<u>Click here for Playlist</u>
Class 12 Physics (CBSE)	<u>Click here for Playlist</u>
Class 12 Mathematics (CBSE)	<u>Click here for Playlist</u>
Class 12 Biology (CBSE)	Click here for Playlist
Class 12 Chemistry (CBSE)	Click here for Playlist

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 12)		
Class 12 CHEMISTRY (CBSE)	Click here for Playlist	
Class 12 Business Studies (CBSE)	Click here for Playlist	
Class 12 Hindi (CBSE)	Click here for Playlist	
NEET Biology in 1 min	Click here for Playlist	
Class 12 History (CBSE)	Click here for Playlist	
Class 12 Political Science (CBSE)	Click here for Playlist	
Class 12 Physics (CBSE)	Click here for Playlist	
Class 12 Biology (CBSE)	Click here for Playlist	
Class 12 : Accounts (CBSE)	Click here for Playlist	

SCHOOL OF EDUCATORS

You will get Pre- Board Papers PDF, Word file, PPT, Lesson Plan, Worksheet, practical tips and Viva questions, reference books, smart content, curriculum, syllabus, marking scheme, toppers answer scripts, revised exam pattern, revised syllabus, Blue Print etc. here .Join Your Subject WhatsApp Group.

Rules & Regulations of the Group

- 1. No introduction
- 2. No Good Morning/Any wish type message
- 3.No personal Chats & Messages
- 4. No Spam
- 5. You can also ask your difficulties here.

Just get learning resources & post learning resources. Helpline number only WhatsApp: +91-95208-77777

Julearn /

Why Artham Resource Material?

Resource materials for teachers and students are essential tools for effective teaching and learning. They provide valuable information, guidance, and support to both teachers and students, making the teaching and learning process more efficient and productive.

For teachers, Artham resource materials include lesson plans, instructional guides, assessment tools, professional development materials, and teaching aids. These materials are well researched and created according to 2023-24 NEP and NCERT guidelines.

For students, resource materials can include textbooks, study guides, homework assignments, reference books, online learning platforms, and educational videos. These materials can be obtained from school libraries, educational publishers, online resources, and teachers.

Both teachers and students can also benefit from Artham educational resources which are free and openly licensed educational materials that can be used and shared for teaching and learning. Artham resource material include textbooks, courses, lesson plans, and multimedia resources that are available online.

In summary, resource materials are critical components of effective teaching and learning. They provide a wealth of information and support that can enhance the quality of education and help students achieve academic success.

Teachers and students can also purchase these resources from the links provided with every resource.

JOIN TELEGRAM GROUP/CHANNELS FOR CLASS WISE HIGH QUALITY RESOURCE MATERIAL

SOE CBSE Groups

- <u>Click to Join CBSE Group...All classes</u>
- <u>Click to Join SOE CBSE Kindergarten Group</u>
- <u>Click to Join SOE CBSE Class 1 Group</u>
- <u>Click to Join SOE CBSE Class 2 Group</u>
- Click to Join SOE CBSE Class 3 Group
- Click to Join SOE CBSE Class 4 Group
- Click to Join SOE CBSE Class 5 Group
- Click to Join SOE CBSE Class 6 Group
- Click to Join SOE CBSE Class 7 Group
- Click to Join SOE CBSE Class 8 Group
- Click to Join SOE CBSE Class 9 Group
- <u>Click to Join SOE CBSE Class 10 Group</u>
- Click to Join SOE CBSE Class 11 (Science) Group
- <u>Click to Join SOE CBSE Class 11 (Commerce) Group</u>
- <u>Click to Join SOE CBSE Class 11 (Humanities) Group</u>
- <u>Click to Join SOE CBSE Class 12 (Science) Group</u>
- <u>Click to Join SOE CBSE Class 12(Commerce) Group</u>

- <u>Click to Join SOE CBSE Class 12 (Humanities) Group</u>
- <u>Click to Join SOE JEE/NEET Group</u>
- <u>Click to Join SOE CUET Group</u>
- <u>Click to Join SOE NDA, OLYMPIAD, NTSE Group</u>
- <u>Click to Join SOE School Principal Professional Development Group</u>
- <u>Click to Join SOE School Teacher Professional Development Group</u>
- <u>Click to Join SOE CBSE Project File Group for Class 9th to 12th All Subjects</u>

SOE ICSE Groups

- <u>Click to Join SOE ICSE Kindergarten Group</u>
- <u>Click to Join SOE ICSE Class 1 Group</u>
- <u>Click to Join SOE ICSE Class 2 Group</u>
- <u>Click to Join SOE ICSE Class 3 Group</u>
- <u>Click to Join SOE ICSE Class 4 Group</u>
- <u>Click to Join SOE ICSE Class 5 Group</u>
- Click to Join SOE ICSE Class 6 Group
- <u>Click to Join SOE ICSE Class 7 Group</u>
- <u>Click to Join SOE ICSE Class 8 Group</u>
- <u>Click to Join SOE ICSE Class 9 Group</u>
- Click to Join SOE ICSE Class 10 Group
- <u>Click to Join SOE ICSE Class 11 (Science) Group</u>
- <u>Click to Join SOE ICSE Class 11 (Commerce) Group</u>
- <u>Click to Join SOE ICSE Class 11 (Humanities) Group</u>
- <u>Click to Join SOE ICSE Class 12 (Science) Group</u>
- <u>Click to Join SOE ICSE Class 12(Commerce) Group</u>
- <u>Click to Join SOE ICSE Class 12 (Humanities) Group</u>
- <u>Click to Join SOE JEE/NEET Group</u>
- <u>Click to Join SOE CUET Group</u>
- <u>Click to Join SOE NDA, OLYMPIAD, NTSE Group</u>
- <u>Click to Join SOE School Principal Professional Development Group</u>
- <u>Click to Join SOE School Teacher Professional Development Group</u>

Nageen CBSE Channels

- <u>Click to Join Nageen CBSE Kindergarten Channel</u>
- <u>Click to Join Nageen CBSE Class 1 Channel</u>
- <u>Click to Join Nageen CBSE Class 2 Channel</u>
- <u>Click to Join Nageen CBSE Class 3 Channel</u>
- <u>Click to Join Nageen CBSE Class 4 Channel</u>
- Click to Join Nageen CBSE Class 5 Channel
- Click to Join Nageen CBSE Class 6 Channel
- Click to Join Nageen CBSE Class 7 Channel
- Click to Join Nageen CBSE Class 8 Channel
- Click to Join Nageen CBSE Class 9 Channel
- Click to Join Nageen CBSE Class 10 Channel
- Click to Join Nageen CBSE Class 11 (Science) Channel
- Click to Join Nageen CBSE Class 11 (Humanities) Channel
- Click to Join Nageen CBSE Class 11 (Commerce) Channel
- Click to Join Nageen CBSE Class 12 (Science) Channel
- <u>Click to Join Nageen CBSE Class 12 (Commerce) Channel</u>
- <u>Click to Join Nageen CBSE Class 12 (Humanities) Channel</u>

- Click to Join JEE/NEET Channel
- <u>Click to Join CUET Channel</u>
- <u>Click to Join NDA, OLYMPIAD, NTSE Channel</u>

Nageen ICSE Channels

- <u>Click to Join Nageen ICSE Kindergarten Channel</u>
- <u>Click to Join Nageen ICSE Class 1 Channel</u>
- <u>Click to Join Nageen ICSE Class 2 Channel</u>
- <u>Click to Join Nageen ICSE Class 3 Channel</u>
- <u>Click to Join Nageen ICSE Class 4 Channel</u>
- <u>Click to Join Nageen ICSE Class 5 Channel</u>
- <u>Click to Join Nageen ICSE Class 6 Channel</u>
- <u>Click to Join Nageen ICSE Class 7 Channel</u>
- <u>Click to Join Nageen ICSE Class 8 Channel</u>
- <u>Click to Join Nageen ICSE Class 9 Channel</u>
- <u>Click to Join Nageen ICSE Class 10 Channel</u>
- <u>Click to Join Nageen ICSE Class 11 (Science) Channel</u>
- <u>Click to Join Nageen ICSE Class 11 (Commerce) Channel</u>
- <u>Click to Join Nageen ICSE Class 11 (Humanities) Channel</u>
- <u>Click to Join Nageen ICSE Class 12 (Science) Channel</u>
- <u>Click to Join Nageen ICSE Class 12 (Commerce) Channel</u>
- <u>Click to Join Nageen ICSE Class 12 (Humanities) Channel</u>
- <u>Click to Join JEE/NEET Channel</u>
- <u>Click to Join CUET Channel</u>
- <u>Click to Join NDA, OLYMPIAD, NTSE Channel</u>